Cargando…
Efficient Direct Nitrosylation of α-Diimine Rhenium Tricarbonyl Complexes to Structurally Nearly Identical Higher Charge Congeners Activable towards Photo-CO Release
The reaction of rhenium α-diimine (N-N) tricarbonyl complexes with nitrosonium tetrafluoroborate yields the corresponding dicarbonyl-nitrosyl [Re(CO)(2)(NO)(N-N)X](+) species (where X = halide). The complexes, accessible in a single step in good yield, are structurally nearly identical higher charge...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434269/ https://www.ncbi.nlm.nih.gov/pubmed/34500734 http://dx.doi.org/10.3390/molecules26175302 |
_version_ | 1783751558108807168 |
---|---|
author | Nasiri Sovari, Sara Kolly, Isabelle Schindler, Kevin Cortat, Youri Liu, Shing-Chi Crochet, Aurelien Pavic, Aleksandar Zobi, Fabio |
author_facet | Nasiri Sovari, Sara Kolly, Isabelle Schindler, Kevin Cortat, Youri Liu, Shing-Chi Crochet, Aurelien Pavic, Aleksandar Zobi, Fabio |
author_sort | Nasiri Sovari, Sara |
collection | PubMed |
description | The reaction of rhenium α-diimine (N-N) tricarbonyl complexes with nitrosonium tetrafluoroborate yields the corresponding dicarbonyl-nitrosyl [Re(CO)(2)(NO)(N-N)X](+) species (where X = halide). The complexes, accessible in a single step in good yield, are structurally nearly identical higher charge congeners of the tricarbonyl molecules. Substitution chemistry aimed at the realization of equivalent dicationic species (intended for applications as potential antimicrobial agents), revealed that the reactivity of metal ion in [Re(CO)(2)(NO)(N-N)X](+) is that of a hard Re acid, probably due to the stronger π-acceptor properties of NO(+) as compared to those of CO. The metal ion thus shows great affinity for π-basic ligands, which are consequently difficult to replace by, e.g., σ-donor or weak π-acids like pyridine. Attempts of direct nitrosylation of α-diimine fac-[Re(CO)(3)](+) complexes bearing π-basic OR-type ligands gave the [Re(CO)(2)(NO)(N-N)(BF(4))][BF(4)] salt as the only product in good yield, featuring a stable Re-FBF(3) bond. The solid state crystal structure of nearly all molecules presented could be elucidated. A fundamental consequence of the chemistry of [Re(CO)(2)(NO)(N-N)X](+) complexes, it that the same can be photo-activated towards CO release and represent an entirely new class of photoCORMs. |
format | Online Article Text |
id | pubmed-8434269 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84342692021-09-12 Efficient Direct Nitrosylation of α-Diimine Rhenium Tricarbonyl Complexes to Structurally Nearly Identical Higher Charge Congeners Activable towards Photo-CO Release Nasiri Sovari, Sara Kolly, Isabelle Schindler, Kevin Cortat, Youri Liu, Shing-Chi Crochet, Aurelien Pavic, Aleksandar Zobi, Fabio Molecules Article The reaction of rhenium α-diimine (N-N) tricarbonyl complexes with nitrosonium tetrafluoroborate yields the corresponding dicarbonyl-nitrosyl [Re(CO)(2)(NO)(N-N)X](+) species (where X = halide). The complexes, accessible in a single step in good yield, are structurally nearly identical higher charge congeners of the tricarbonyl molecules. Substitution chemistry aimed at the realization of equivalent dicationic species (intended for applications as potential antimicrobial agents), revealed that the reactivity of metal ion in [Re(CO)(2)(NO)(N-N)X](+) is that of a hard Re acid, probably due to the stronger π-acceptor properties of NO(+) as compared to those of CO. The metal ion thus shows great affinity for π-basic ligands, which are consequently difficult to replace by, e.g., σ-donor or weak π-acids like pyridine. Attempts of direct nitrosylation of α-diimine fac-[Re(CO)(3)](+) complexes bearing π-basic OR-type ligands gave the [Re(CO)(2)(NO)(N-N)(BF(4))][BF(4)] salt as the only product in good yield, featuring a stable Re-FBF(3) bond. The solid state crystal structure of nearly all molecules presented could be elucidated. A fundamental consequence of the chemistry of [Re(CO)(2)(NO)(N-N)X](+) complexes, it that the same can be photo-activated towards CO release and represent an entirely new class of photoCORMs. MDPI 2021-08-31 /pmc/articles/PMC8434269/ /pubmed/34500734 http://dx.doi.org/10.3390/molecules26175302 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Nasiri Sovari, Sara Kolly, Isabelle Schindler, Kevin Cortat, Youri Liu, Shing-Chi Crochet, Aurelien Pavic, Aleksandar Zobi, Fabio Efficient Direct Nitrosylation of α-Diimine Rhenium Tricarbonyl Complexes to Structurally Nearly Identical Higher Charge Congeners Activable towards Photo-CO Release |
title | Efficient Direct Nitrosylation of α-Diimine Rhenium Tricarbonyl Complexes to Structurally Nearly Identical Higher Charge Congeners Activable towards Photo-CO Release |
title_full | Efficient Direct Nitrosylation of α-Diimine Rhenium Tricarbonyl Complexes to Structurally Nearly Identical Higher Charge Congeners Activable towards Photo-CO Release |
title_fullStr | Efficient Direct Nitrosylation of α-Diimine Rhenium Tricarbonyl Complexes to Structurally Nearly Identical Higher Charge Congeners Activable towards Photo-CO Release |
title_full_unstemmed | Efficient Direct Nitrosylation of α-Diimine Rhenium Tricarbonyl Complexes to Structurally Nearly Identical Higher Charge Congeners Activable towards Photo-CO Release |
title_short | Efficient Direct Nitrosylation of α-Diimine Rhenium Tricarbonyl Complexes to Structurally Nearly Identical Higher Charge Congeners Activable towards Photo-CO Release |
title_sort | efficient direct nitrosylation of α-diimine rhenium tricarbonyl complexes to structurally nearly identical higher charge congeners activable towards photo-co release |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434269/ https://www.ncbi.nlm.nih.gov/pubmed/34500734 http://dx.doi.org/10.3390/molecules26175302 |
work_keys_str_mv | AT nasirisovarisara efficientdirectnitrosylationofadiiminerheniumtricarbonylcomplexestostructurallynearlyidenticalhigherchargecongenersactivabletowardsphotocorelease AT kollyisabelle efficientdirectnitrosylationofadiiminerheniumtricarbonylcomplexestostructurallynearlyidenticalhigherchargecongenersactivabletowardsphotocorelease AT schindlerkevin efficientdirectnitrosylationofadiiminerheniumtricarbonylcomplexestostructurallynearlyidenticalhigherchargecongenersactivabletowardsphotocorelease AT cortatyouri efficientdirectnitrosylationofadiiminerheniumtricarbonylcomplexestostructurallynearlyidenticalhigherchargecongenersactivabletowardsphotocorelease AT liushingchi efficientdirectnitrosylationofadiiminerheniumtricarbonylcomplexestostructurallynearlyidenticalhigherchargecongenersactivabletowardsphotocorelease AT crochetaurelien efficientdirectnitrosylationofadiiminerheniumtricarbonylcomplexestostructurallynearlyidenticalhigherchargecongenersactivabletowardsphotocorelease AT pavicaleksandar efficientdirectnitrosylationofadiiminerheniumtricarbonylcomplexestostructurallynearlyidenticalhigherchargecongenersactivabletowardsphotocorelease AT zobifabio efficientdirectnitrosylationofadiiminerheniumtricarbonylcomplexestostructurallynearlyidenticalhigherchargecongenersactivabletowardsphotocorelease |