Cargando…
Computationally Efficient Nonlinear Model Predictive Control Using the L(1) Cost-Function
Model Predictive Control (MPC) algorithms typically use the classical L [Formula: see text] cost function, which minimises squared differences of predicted control errors. Such an approach has good numerical properties, but the L [Formula: see text] norm that measures absolute values of the control...
Autores principales: | Ławryńczuk, Maciej, Nebeluk, Robert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434402/ https://www.ncbi.nlm.nih.gov/pubmed/34502727 http://dx.doi.org/10.3390/s21175835 |
Ejemplares similares
-
Computationally efficient model predictive control algorithms: a neural network approach
por: Ławryńczuk, Maciej
Publicado: (2014) -
Digital Twins in the Practice of High-Energy Physics Experiments: A Gas System for the Multipurpose Detector
por: Chaber, Patryk, et al.
Publicado: (2022) -
Forgery Cyber-Attack Supported by LSTM Neural Network: An Experimental Case Study
por: Zarzycki, Krzysztof, et al.
Publicado: (2023) -
Fast Real-Time Model Predictive Control for a Ball-on-Plate Process
por: Zarzycki, Krzysztof, et al.
Publicado: (2021) -
LSTM and GRU Neural Networks as Models of Dynamical Processes Used in Predictive Control: A Comparison of Models Developed for Two Chemical Reactors
por: Zarzycki, Krzysztof, et al.
Publicado: (2021)