Cargando…

Long-term culture of SH-SY5Y neuroblastoma cells in the absence of neurotrophins: A novel model of neuronal ageing

BACKGROUND: Studying human ageing is of increasing importance due to the worldwide ageing population. However, it faces the challenge of lengthy experiments to produce an ageing phenotype. Often, to recreate the hallmarks of ageing requires complex empirical conditions that can confound data interpr...

Descripción completa

Detalles Bibliográficos
Autores principales: Strother, Lisa, Miles, Gareth B., Holiday, Alison R., Cheng, Ying, Doherty, Gayle H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier/North-Holland Biomedical Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434422/
https://www.ncbi.nlm.nih.gov/pubmed/34343572
http://dx.doi.org/10.1016/j.jneumeth.2021.109301
_version_ 1783751595859640320
author Strother, Lisa
Miles, Gareth B.
Holiday, Alison R.
Cheng, Ying
Doherty, Gayle H.
author_facet Strother, Lisa
Miles, Gareth B.
Holiday, Alison R.
Cheng, Ying
Doherty, Gayle H.
author_sort Strother, Lisa
collection PubMed
description BACKGROUND: Studying human ageing is of increasing importance due to the worldwide ageing population. However, it faces the challenge of lengthy experiments to produce an ageing phenotype. Often, to recreate the hallmarks of ageing requires complex empirical conditions that can confound data interpretation. Indeed, many studies use whole organisms with relatively short life spans, which may have little, or limited, relevance to human ageing. There has been extensive use of cell lines to study ageing in human somatic cells, but the modelling of human neuronal ageing is somewhat more complex in vitro. NEW METHOD: We cultured the well-characterised SH-SY5Y human neural cell line to produce high purity cultures of cells differentiated to express a neuronal phenotype, and designed a protocol to maintain these cells in culture until they accumulated biomarkers of cellular ageing. RESULTS: Our data validate a novel and simple technique for the efficient differentiation and long-term maintenance of SH-SY5Y cells, expressing markers of neuronal differentiation and demonstrating electrical activity in culture. Over time in vitro, these cells progressively accumulate markers of ageing such as enhanced production of reactive oxygen species and accumulation of oxidative damage. COMPARISON TO EXISTING METHODS: In comparison to existing techniques to model neuronal ageing our method is cost effective, requiring no specialist equipment or growth factors. CONCLUSIONS: We demonstrate that SH-SY5Y cells, grown under these culture conditions, represent a simple model of neuronal ageing that is amenable to cell biological, biochemical and electrophysiological investigation.
format Online
Article
Text
id pubmed-8434422
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier/North-Holland Biomedical Press
record_format MEDLINE/PubMed
spelling pubmed-84344222021-10-01 Long-term culture of SH-SY5Y neuroblastoma cells in the absence of neurotrophins: A novel model of neuronal ageing Strother, Lisa Miles, Gareth B. Holiday, Alison R. Cheng, Ying Doherty, Gayle H. J Neurosci Methods Article BACKGROUND: Studying human ageing is of increasing importance due to the worldwide ageing population. However, it faces the challenge of lengthy experiments to produce an ageing phenotype. Often, to recreate the hallmarks of ageing requires complex empirical conditions that can confound data interpretation. Indeed, many studies use whole organisms with relatively short life spans, which may have little, or limited, relevance to human ageing. There has been extensive use of cell lines to study ageing in human somatic cells, but the modelling of human neuronal ageing is somewhat more complex in vitro. NEW METHOD: We cultured the well-characterised SH-SY5Y human neural cell line to produce high purity cultures of cells differentiated to express a neuronal phenotype, and designed a protocol to maintain these cells in culture until they accumulated biomarkers of cellular ageing. RESULTS: Our data validate a novel and simple technique for the efficient differentiation and long-term maintenance of SH-SY5Y cells, expressing markers of neuronal differentiation and demonstrating electrical activity in culture. Over time in vitro, these cells progressively accumulate markers of ageing such as enhanced production of reactive oxygen species and accumulation of oxidative damage. COMPARISON TO EXISTING METHODS: In comparison to existing techniques to model neuronal ageing our method is cost effective, requiring no specialist equipment or growth factors. CONCLUSIONS: We demonstrate that SH-SY5Y cells, grown under these culture conditions, represent a simple model of neuronal ageing that is amenable to cell biological, biochemical and electrophysiological investigation. Elsevier/North-Holland Biomedical Press 2021-10-01 /pmc/articles/PMC8434422/ /pubmed/34343572 http://dx.doi.org/10.1016/j.jneumeth.2021.109301 Text en Crown Copyright © 2021 Published by Elsevier B.V. https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Strother, Lisa
Miles, Gareth B.
Holiday, Alison R.
Cheng, Ying
Doherty, Gayle H.
Long-term culture of SH-SY5Y neuroblastoma cells in the absence of neurotrophins: A novel model of neuronal ageing
title Long-term culture of SH-SY5Y neuroblastoma cells in the absence of neurotrophins: A novel model of neuronal ageing
title_full Long-term culture of SH-SY5Y neuroblastoma cells in the absence of neurotrophins: A novel model of neuronal ageing
title_fullStr Long-term culture of SH-SY5Y neuroblastoma cells in the absence of neurotrophins: A novel model of neuronal ageing
title_full_unstemmed Long-term culture of SH-SY5Y neuroblastoma cells in the absence of neurotrophins: A novel model of neuronal ageing
title_short Long-term culture of SH-SY5Y neuroblastoma cells in the absence of neurotrophins: A novel model of neuronal ageing
title_sort long-term culture of sh-sy5y neuroblastoma cells in the absence of neurotrophins: a novel model of neuronal ageing
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434422/
https://www.ncbi.nlm.nih.gov/pubmed/34343572
http://dx.doi.org/10.1016/j.jneumeth.2021.109301
work_keys_str_mv AT strotherlisa longtermcultureofshsy5yneuroblastomacellsintheabsenceofneurotrophinsanovelmodelofneuronalageing
AT milesgarethb longtermcultureofshsy5yneuroblastomacellsintheabsenceofneurotrophinsanovelmodelofneuronalageing
AT holidayalisonr longtermcultureofshsy5yneuroblastomacellsintheabsenceofneurotrophinsanovelmodelofneuronalageing
AT chengying longtermcultureofshsy5yneuroblastomacellsintheabsenceofneurotrophinsanovelmodelofneuronalageing
AT dohertygayleh longtermcultureofshsy5yneuroblastomacellsintheabsenceofneurotrophinsanovelmodelofneuronalageing