Cargando…

The effect of α-tocopherol, α- and γ-tocotrienols on amyloid-β aggregation and disaggregation in vitro

One of the neuropathological hallmarks of Alzheimer's disease (AD)—causing neurodegeneration and consequent memory deterioration, and eventually, cognitive decline—is amyloid-β (Aβ) aggregation forming amyloid plaques. Our previous study showed the potential of a tocotrienol-rich fraction—a mix...

Descripción completa

Detalles Bibliográficos
Autores principales: Ibrahim, Nor Faeizah, Hamezah, Hamizah Shahirah, Yanagisawa, Daijiro, Tsuji, Mayumi, Kiuchi, Yuji, Ono, Kenjiro, Tooyama, Ikuo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8435913/
https://www.ncbi.nlm.nih.gov/pubmed/34541343
http://dx.doi.org/10.1016/j.bbrep.2021.101131
Descripción
Sumario:One of the neuropathological hallmarks of Alzheimer's disease (AD)—causing neurodegeneration and consequent memory deterioration, and eventually, cognitive decline—is amyloid-β (Aβ) aggregation forming amyloid plaques. Our previous study showed the potential of a tocotrienol-rich fraction—a mixture of naturally occurring of vitamin E analogs—to inhibit Aβ aggregation and restore cognitive function in an AD mouse model. The current study examined the effect of three vitamin E analogs—α-tocopherol (α-TOC), α-tocotrienol (α-T3), and γ-tocotrienol (γ-T3)—on Aβ aggregation, disaggregation, and oligomerization in vitro. Thioflavin T (ThT) assay showed α-T3 reduced Aβ aggregation at 10 μM concentration. Furthermore, both α-T3 and γ-T3 demonstrated Aβ disaggregation, as shown by the reduction of ThT fluorescence. However, α-TOC showed no significant effect. We confirmed the results for ThT assays with scanning electron microscopy imaging. Further investigation in photo-induced cross-linking of unmodified protein assay indicated a reduction in Aβ oligomerization by γ-T3. The present study thus revealed the individual effect of each tocotrienol analog in reducing Aβ aggregation and oligomerization as well as disaggregating preformed fibrils.