Cargando…

Thrombin-activated platelet-rich plasma enhances osteogenic differentiation of human periodontal ligament stem cells by activating SIRT1-mediated autophagy

BACKGROUND: Platelet-rich plasma (PRP) has the potential to be used for bone regeneration. However, its effect on osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and its effect on cell autophagy of hPDLSCs remain unknown. In this study, we investigated the effects of PR...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Yunhe, Wang, Xiaoning, Liu, Wenshu, Lu, Weiwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8444612/
https://www.ncbi.nlm.nih.gov/pubmed/34526113
http://dx.doi.org/10.1186/s40001-021-00575-x
Descripción
Sumario:BACKGROUND: Platelet-rich plasma (PRP) has the potential to be used for bone regeneration. However, its effect on osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and its effect on cell autophagy of hPDLSCs remain unknown. In this study, we investigated the effects of PRP on cell viability and osteogenic differentiation of hPDLSCs and the underlying molecular mechanisms. METHODS: hPDLSCs were isolated and identified by morphology and flow cytometry analysis. Next, thrombin-activated PRP was used to stimulate hPDLSCs. The MTT assay was used to analyze cell viability. Osteogenic differentiation was investigated using alkaline phosphatase (ALP) activity assay, alizarin red S (ARS) staining, and gene expression analysis of osteogenic markers. Expression of the autophagic proteins was determined using western blotting. RESULTS: Thrombin-activated PRP significantly enhanced cell viability, ALP activity, osteogenic-related mRNA levels and alizarin red-mineralization activity in hPDLSCs in a dose-dependent manner. Furthermore, activated PRP dose-dependently increased LC3-II/I ratio and the expression of SIRT1 and Beclin-1. PRP treatment also enhanced the autophagic flux. It was also demonstrated that the inhibition of SIRT1 using sirtinol or suppression of autophagy by 3-methyladenine (3-MA) abrogated PRP-induced viability and osteogenic differentiation of hPDLSCs. CONCLUSION: Our study suggested that thrombin-activated PRP accelerated the viability and osteogenic differentiation of hPDLSCs via SIRT1-mediated autophagy induction.