Cargando…
RIM-Binding Protein 2 Organizes Ca(2+) Channel Topography and Regulates Release Probability and Vesicle Replenishment at a Fast Central Synapse
Rab-interacting molecule (RIM)-binding protein 2 (BP2) is a multidomain protein of the presynaptic active zone (AZ). By binding to RIM, bassoon (Bsn), and voltage-gated Ca(2+) channels (Ca(V)), it is considered to be a central organizer of the topography of Ca(V) and release sites of synaptic vesicl...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Neuroscience
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8445062/ https://www.ncbi.nlm.nih.gov/pubmed/34353898 http://dx.doi.org/10.1523/JNEUROSCI.0586-21.2021 |
Sumario: | Rab-interacting molecule (RIM)-binding protein 2 (BP2) is a multidomain protein of the presynaptic active zone (AZ). By binding to RIM, bassoon (Bsn), and voltage-gated Ca(2+) channels (Ca(V)), it is considered to be a central organizer of the topography of Ca(V) and release sites of synaptic vesicles (SVs) at the AZ. Here, we used RIM-BP2 knock-out (KO) mice and their wild-type (WT) littermates of either sex to investigate the role of RIM-BP2 at the endbulb of Held synapse of auditory nerve fibers (ANFs) with bushy cells (BCs) of the cochlear nucleus, a fast relay of the auditory pathway with high release probability. Disruption of RIM-BP2 lowered release probability altering short-term plasticity and reduced evoked EPSCs. Analysis of SV pool dynamics during high-frequency train stimulation indicated a reduction of SVs with high release probability but an overall normal size of the readily releasable SV pool (RRP). The Ca(2+)-dependent fast component of SV replenishment after RRP depletion was slowed. Ultrastructural analysis by superresolution light and electron microscopy revealed an impaired topography of presynaptic Ca(V) and a reduction of docked and membrane-proximal SVs at the AZ. We conclude that RIM-BP2 organizes the topography of Ca(V), and promotes SV tethering and docking. This way RIM-BP2 is critical for establishing a high initial release probability as required to reliably signal sound onset information that we found to be degraded in BCs of RIM-BP2-deficient mice in vivo. SIGNIFICANCE STATEMENT Rab-interacting molecule (RIM)-binding proteins (BPs) are key organizers of the active zone (AZ). Using a multidisciplinary approach to the calyceal endbulb of Held synapse that transmits auditory information at rates of up to hundreds of Hertz with submillisecond precision we demonstrate a requirement for RIM-BP2 for normal auditory signaling. Endbulb synapses lacking RIM-BP2 show a reduced release probability despite normal whole-terminal Ca(2+) influx and abundance of the key priming protein Munc13-1, a reduced rate of SV replenishment, as well as an altered topography of voltage-gated (Ca(V))2.1 Ca(2+) channels, and fewer docked and membrane proximal synaptic vesicles (SVs). This hampers transmission of sound onset information likely affecting downstream neural computations such as of sound localization. |
---|