Cargando…

Semisupervised Deep Learning Techniques for Predicting Acute Respiratory Distress Syndrome From Time-Series Clinical Data: Model Development and Validation Study

BACKGROUND: A high number of patients who are hospitalized with COVID-19 develop acute respiratory distress syndrome (ARDS). OBJECTIVE: In response to the need for clinical decision support tools to help manage the next pandemic during the early stages (ie, when limited labeled data are present), we...

Descripción completa

Detalles Bibliográficos
Autores principales: Lam, Carson, Tso, Chak Foon, Green-Saxena, Abigail, Pellegrini, Emily, Iqbal, Zohora, Evans, Daniel, Hoffman, Jana, Calvert, Jacob, Mao, Qingqing, Das, Ritankar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8447921/
https://www.ncbi.nlm.nih.gov/pubmed/34398784
http://dx.doi.org/10.2196/28028