Cargando…

A Transposon-Associated CRISPR/Cas9 System Specifically Eliminates both Chromosomal and Plasmid-Borne mcr-1 in Escherichia coli

The global spread of antimicrobial-resistant bacteria has been one of the most severe threats to public health. The emergence of the mcr-1 gene has posed a considerable threat to antimicrobial medication since it deactivates one last-resort antibiotic, colistin. There have been reports regarding the...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Yu-Zhang, Yan, Jin-Ru, He, Bing, Ren, Hao, Kuang, Xu, Long, Teng-Fei, Chen, Cai-Ping, Liao, Xiao-Ping, Liu, Ya-Hong, Sun, Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8448152/
https://www.ncbi.nlm.nih.gov/pubmed/34339270
http://dx.doi.org/10.1128/AAC.01054-21
Descripción
Sumario:The global spread of antimicrobial-resistant bacteria has been one of the most severe threats to public health. The emergence of the mcr-1 gene has posed a considerable threat to antimicrobial medication since it deactivates one last-resort antibiotic, colistin. There have been reports regarding the mobilization of the mcr-1 gene facilitated by ISApl1-formed transposon Tn6330 and mediated rapid dispersion among Enterobacteriaceae species. Here, we developed a CRISPR/Cas9 system flanked by ISApl1 in a suicide plasmid capable of exerting sequence-specific curing against the mcr-1-bearing plasmid and killing the strain with chromosome-borne mcr-1. The constructed ISApl1-carried CRISPR/Cas9 system either restored sensitivity to colistin in strains with plasmid-borne mcr-1 or directly eradicated the bacteria harboring chromosome-borne mcr-1 by introducing an exogenous CRISPR/Cas9 targeting the mcr-1 gene. This method is highly efficient in removing the mcr-1 gene from Escherichia coli, thereby resensitizing these strains to colistin. The further results demonstrated that it conferred the recipient bacteria with immunity against the acquisition of the exogenous mcr-1 containing the plasmid. The data from the current study highlighted the potential of the transposon-associated CRISPR/Cas9 system to serve as a therapeutic approach to control the dissemination of mcr-1 resistance among clinical pathogens.