Cargando…
A scalable Drosophila assay for clinical interpretation of human PTEN variants in suppression of PI3K/AKT induced cellular proliferation
Gene variant discovery is becoming routine, but it remains difficult to usefully interpret the functional consequence or disease relevance of most variants. To fill this interpretation gap, experimental assays of variant function are becoming common place. Yet, it remains challenging to make these a...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8448351/ https://www.ncbi.nlm.nih.gov/pubmed/34492006 http://dx.doi.org/10.1371/journal.pgen.1009774 |
_version_ | 1784569221662900224 |
---|---|
author | Ganguly, Payel Madonsela, Landiso Chao, Jesse T. Loewen, Christopher J. R. O’Connor, Timothy P. Verheyen, Esther M. Allan, Douglas W. |
author_facet | Ganguly, Payel Madonsela, Landiso Chao, Jesse T. Loewen, Christopher J. R. O’Connor, Timothy P. Verheyen, Esther M. Allan, Douglas W. |
author_sort | Ganguly, Payel |
collection | PubMed |
description | Gene variant discovery is becoming routine, but it remains difficult to usefully interpret the functional consequence or disease relevance of most variants. To fill this interpretation gap, experimental assays of variant function are becoming common place. Yet, it remains challenging to make these assays reproducible, scalable to high numbers of variants, and capable of assessing defined gene-disease mechanism for clinical interpretation aligned to the ClinGen Sequence Variant Interpretation (SVI) Working Group guidelines for ‘well-established assays’. Drosophila melanogaster offers great potential as an assay platform, but was untested for high numbers of human variants adherent to these guidelines. Here, we wished to test the utility of Drosophila as a platform for scalable well-established assays. We took a genetic interaction approach to test the function of ~100 human PTEN variants in cancer-relevant suppression of PI3K/AKT signaling in cellular growth and proliferation. We validated the assay using biochemically characterized PTEN mutants as well as 23 total known pathogenic and benign PTEN variants, all of which the assay correctly assigned into predicted functional categories. Additionally, function calls for these variants correlated very well with our recent published data from a human cell line. Finally, using these pathogenic and benign variants to calibrate the assay, we could set readout thresholds for clinical interpretation of the pathogenicity of 70 other PTEN variants. Overall, we demonstrate that Drosophila offers a powerful assay platform for clinical variant interpretation, that can be used in conjunction with other well-established assays, to increase confidence in the accurate assessment of variant function and pathogenicity. |
format | Online Article Text |
id | pubmed-8448351 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-84483512021-09-18 A scalable Drosophila assay for clinical interpretation of human PTEN variants in suppression of PI3K/AKT induced cellular proliferation Ganguly, Payel Madonsela, Landiso Chao, Jesse T. Loewen, Christopher J. R. O’Connor, Timothy P. Verheyen, Esther M. Allan, Douglas W. PLoS Genet Research Article Gene variant discovery is becoming routine, but it remains difficult to usefully interpret the functional consequence or disease relevance of most variants. To fill this interpretation gap, experimental assays of variant function are becoming common place. Yet, it remains challenging to make these assays reproducible, scalable to high numbers of variants, and capable of assessing defined gene-disease mechanism for clinical interpretation aligned to the ClinGen Sequence Variant Interpretation (SVI) Working Group guidelines for ‘well-established assays’. Drosophila melanogaster offers great potential as an assay platform, but was untested for high numbers of human variants adherent to these guidelines. Here, we wished to test the utility of Drosophila as a platform for scalable well-established assays. We took a genetic interaction approach to test the function of ~100 human PTEN variants in cancer-relevant suppression of PI3K/AKT signaling in cellular growth and proliferation. We validated the assay using biochemically characterized PTEN mutants as well as 23 total known pathogenic and benign PTEN variants, all of which the assay correctly assigned into predicted functional categories. Additionally, function calls for these variants correlated very well with our recent published data from a human cell line. Finally, using these pathogenic and benign variants to calibrate the assay, we could set readout thresholds for clinical interpretation of the pathogenicity of 70 other PTEN variants. Overall, we demonstrate that Drosophila offers a powerful assay platform for clinical variant interpretation, that can be used in conjunction with other well-established assays, to increase confidence in the accurate assessment of variant function and pathogenicity. Public Library of Science 2021-09-07 /pmc/articles/PMC8448351/ /pubmed/34492006 http://dx.doi.org/10.1371/journal.pgen.1009774 Text en © 2021 Ganguly et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Ganguly, Payel Madonsela, Landiso Chao, Jesse T. Loewen, Christopher J. R. O’Connor, Timothy P. Verheyen, Esther M. Allan, Douglas W. A scalable Drosophila assay for clinical interpretation of human PTEN variants in suppression of PI3K/AKT induced cellular proliferation |
title | A scalable Drosophila assay for clinical interpretation of human PTEN variants in suppression of PI3K/AKT induced cellular proliferation |
title_full | A scalable Drosophila assay for clinical interpretation of human PTEN variants in suppression of PI3K/AKT induced cellular proliferation |
title_fullStr | A scalable Drosophila assay for clinical interpretation of human PTEN variants in suppression of PI3K/AKT induced cellular proliferation |
title_full_unstemmed | A scalable Drosophila assay for clinical interpretation of human PTEN variants in suppression of PI3K/AKT induced cellular proliferation |
title_short | A scalable Drosophila assay for clinical interpretation of human PTEN variants in suppression of PI3K/AKT induced cellular proliferation |
title_sort | scalable drosophila assay for clinical interpretation of human pten variants in suppression of pi3k/akt induced cellular proliferation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8448351/ https://www.ncbi.nlm.nih.gov/pubmed/34492006 http://dx.doi.org/10.1371/journal.pgen.1009774 |
work_keys_str_mv | AT gangulypayel ascalabledrosophilaassayforclinicalinterpretationofhumanptenvariantsinsuppressionofpi3kaktinducedcellularproliferation AT madonselalandiso ascalabledrosophilaassayforclinicalinterpretationofhumanptenvariantsinsuppressionofpi3kaktinducedcellularproliferation AT chaojesset ascalabledrosophilaassayforclinicalinterpretationofhumanptenvariantsinsuppressionofpi3kaktinducedcellularproliferation AT loewenchristopherjr ascalabledrosophilaassayforclinicalinterpretationofhumanptenvariantsinsuppressionofpi3kaktinducedcellularproliferation AT oconnortimothyp ascalabledrosophilaassayforclinicalinterpretationofhumanptenvariantsinsuppressionofpi3kaktinducedcellularproliferation AT verheyenestherm ascalabledrosophilaassayforclinicalinterpretationofhumanptenvariantsinsuppressionofpi3kaktinducedcellularproliferation AT allandouglasw ascalabledrosophilaassayforclinicalinterpretationofhumanptenvariantsinsuppressionofpi3kaktinducedcellularproliferation AT gangulypayel scalabledrosophilaassayforclinicalinterpretationofhumanptenvariantsinsuppressionofpi3kaktinducedcellularproliferation AT madonselalandiso scalabledrosophilaassayforclinicalinterpretationofhumanptenvariantsinsuppressionofpi3kaktinducedcellularproliferation AT chaojesset scalabledrosophilaassayforclinicalinterpretationofhumanptenvariantsinsuppressionofpi3kaktinducedcellularproliferation AT loewenchristopherjr scalabledrosophilaassayforclinicalinterpretationofhumanptenvariantsinsuppressionofpi3kaktinducedcellularproliferation AT oconnortimothyp scalabledrosophilaassayforclinicalinterpretationofhumanptenvariantsinsuppressionofpi3kaktinducedcellularproliferation AT verheyenestherm scalabledrosophilaassayforclinicalinterpretationofhumanptenvariantsinsuppressionofpi3kaktinducedcellularproliferation AT allandouglasw scalabledrosophilaassayforclinicalinterpretationofhumanptenvariantsinsuppressionofpi3kaktinducedcellularproliferation |