Cargando…

Empirical versus theoretical power and type I error (false-positive) rates estimated from real murine aging research data

We assess the degree of phenotypic variation in a cohort of 24-month-old male C57BL/6 mice. Because murine studies often use small sample sizes, if the commonly relied upon assumption of a normal distribution of residuals is not met, it may inflate type I error rates. In this study, 3–20 mice are re...

Descripción completa

Detalles Bibliográficos
Autores principales: Alfaras, Irene, Ejima, Keisuke, Teixeira, Camila Vieira Ligo, Di Germanio, Clara, Mitchell, Sarah J., Hamilton, Samuel, Ferrucci, Luigi, Price, Nathan L., Allison, David B., Bernier, Michel, de Cabo, Rafael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8449850/
https://www.ncbi.nlm.nih.gov/pubmed/34407413
http://dx.doi.org/10.1016/j.celrep.2021.109560
_version_ 1784569500201385984
author Alfaras, Irene
Ejima, Keisuke
Teixeira, Camila Vieira Ligo
Di Germanio, Clara
Mitchell, Sarah J.
Hamilton, Samuel
Ferrucci, Luigi
Price, Nathan L.
Allison, David B.
Bernier, Michel
de Cabo, Rafael
author_facet Alfaras, Irene
Ejima, Keisuke
Teixeira, Camila Vieira Ligo
Di Germanio, Clara
Mitchell, Sarah J.
Hamilton, Samuel
Ferrucci, Luigi
Price, Nathan L.
Allison, David B.
Bernier, Michel
de Cabo, Rafael
author_sort Alfaras, Irene
collection PubMed
description We assess the degree of phenotypic variation in a cohort of 24-month-old male C57BL/6 mice. Because murine studies often use small sample sizes, if the commonly relied upon assumption of a normal distribution of residuals is not met, it may inflate type I error rates. In this study, 3–20 mice are resampled from the empirical distributions of 376 mice to create plasmodes, an approach for computing type I error rates and power for commonly used statistical tests without assuming a normal distribution of residuals. While all of the phenotypic and metabolic variables studied show considerable variability, the number of animals required to achieve adequate power is markedly different depending on the statistical test being performed. Overall, this work provides an analysis with which researchers can make informed decisions about the sample size required to achieve statistical power from specific measurements without a priori assumptions of a theoretical distribution.
format Online
Article
Text
id pubmed-8449850
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-84498502021-09-19 Empirical versus theoretical power and type I error (false-positive) rates estimated from real murine aging research data Alfaras, Irene Ejima, Keisuke Teixeira, Camila Vieira Ligo Di Germanio, Clara Mitchell, Sarah J. Hamilton, Samuel Ferrucci, Luigi Price, Nathan L. Allison, David B. Bernier, Michel de Cabo, Rafael Cell Rep Article We assess the degree of phenotypic variation in a cohort of 24-month-old male C57BL/6 mice. Because murine studies often use small sample sizes, if the commonly relied upon assumption of a normal distribution of residuals is not met, it may inflate type I error rates. In this study, 3–20 mice are resampled from the empirical distributions of 376 mice to create plasmodes, an approach for computing type I error rates and power for commonly used statistical tests without assuming a normal distribution of residuals. While all of the phenotypic and metabolic variables studied show considerable variability, the number of animals required to achieve adequate power is markedly different depending on the statistical test being performed. Overall, this work provides an analysis with which researchers can make informed decisions about the sample size required to achieve statistical power from specific measurements without a priori assumptions of a theoretical distribution. 2021-08-17 /pmc/articles/PMC8449850/ /pubmed/34407413 http://dx.doi.org/10.1016/j.celrep.2021.109560 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ).
spellingShingle Article
Alfaras, Irene
Ejima, Keisuke
Teixeira, Camila Vieira Ligo
Di Germanio, Clara
Mitchell, Sarah J.
Hamilton, Samuel
Ferrucci, Luigi
Price, Nathan L.
Allison, David B.
Bernier, Michel
de Cabo, Rafael
Empirical versus theoretical power and type I error (false-positive) rates estimated from real murine aging research data
title Empirical versus theoretical power and type I error (false-positive) rates estimated from real murine aging research data
title_full Empirical versus theoretical power and type I error (false-positive) rates estimated from real murine aging research data
title_fullStr Empirical versus theoretical power and type I error (false-positive) rates estimated from real murine aging research data
title_full_unstemmed Empirical versus theoretical power and type I error (false-positive) rates estimated from real murine aging research data
title_short Empirical versus theoretical power and type I error (false-positive) rates estimated from real murine aging research data
title_sort empirical versus theoretical power and type i error (false-positive) rates estimated from real murine aging research data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8449850/
https://www.ncbi.nlm.nih.gov/pubmed/34407413
http://dx.doi.org/10.1016/j.celrep.2021.109560
work_keys_str_mv AT alfarasirene empiricalversustheoreticalpowerandtypeierrorfalsepositiveratesestimatedfromrealmurineagingresearchdata
AT ejimakeisuke empiricalversustheoreticalpowerandtypeierrorfalsepositiveratesestimatedfromrealmurineagingresearchdata
AT teixeiracamilavieiraligo empiricalversustheoreticalpowerandtypeierrorfalsepositiveratesestimatedfromrealmurineagingresearchdata
AT digermanioclara empiricalversustheoreticalpowerandtypeierrorfalsepositiveratesestimatedfromrealmurineagingresearchdata
AT mitchellsarahj empiricalversustheoreticalpowerandtypeierrorfalsepositiveratesestimatedfromrealmurineagingresearchdata
AT hamiltonsamuel empiricalversustheoreticalpowerandtypeierrorfalsepositiveratesestimatedfromrealmurineagingresearchdata
AT ferrucciluigi empiricalversustheoreticalpowerandtypeierrorfalsepositiveratesestimatedfromrealmurineagingresearchdata
AT pricenathanl empiricalversustheoreticalpowerandtypeierrorfalsepositiveratesestimatedfromrealmurineagingresearchdata
AT allisondavidb empiricalversustheoreticalpowerandtypeierrorfalsepositiveratesestimatedfromrealmurineagingresearchdata
AT berniermichel empiricalversustheoreticalpowerandtypeierrorfalsepositiveratesestimatedfromrealmurineagingresearchdata
AT decaborafael empiricalversustheoreticalpowerandtypeierrorfalsepositiveratesestimatedfromrealmurineagingresearchdata