Cargando…
An improved deep forest model for prediction of e-commerce consumers’ repurchase behavior
As the Internet retail industry continues to rise, more and more consumers choose to shop online, especially Chinese consumers. Using consumer behavior data left on the Internet to predict repurchase behavior is of great significance for companies to achieve precision marketing. This paper proposes...
Autores principales: | Zhang, Weiwei, Wang, Mingyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452008/ https://www.ncbi.nlm.nih.gov/pubmed/34543319 http://dx.doi.org/10.1371/journal.pone.0255906 |
Ejemplares similares
-
Machine learning-based e-commerce platform repurchase customer prediction model
por: Liu, Cheng-Ju, et al.
Publicado: (2020) -
Gamification and reputation: key determinants of e-commerce usage and repurchase intention
por: Aparicio, Manuela, et al.
Publicado: (2021) -
Exploring the Relationship Between Social Commerce Features and Consumers’ Repurchase Intentions: The Mediating Role of Perceived Value
por: Guo, Jinyuan, et al.
Publicado: (2022) -
Repurchase intentions of new e-commerce users in the COVID-19 context: The mediation role of brand love
por: Ding, Yi, et al.
Publicado: (2022) -
Assessing Consumer Preference for Overpackaging Solutions in E-Commerce
por: Xie, Guojie, et al.
Publicado: (2021)