Cargando…

Carbon-Ion Beam Irradiation and the miR-200c Mimic Effectively Eradicate Pancreatic Cancer Stem Cells Under in vitro and in vivo Conditions

PURPOSE: The study investigated the molecular mechanisms that killed pancreatic cancer cells, including cancer stem cells (CSCs), by carbon ion beam irradiation alone or in combination with miRNA-200c under in vitro and in vivo conditions. METHODS: Human pancreatic cancer (PC) cells, PANC1 and PK45,...

Descripción completa

Detalles Bibliográficos
Autores principales: Sai, Sei, Kim, Eun Ho, Koom, Woong Sub, Vares, Guillaume, Suzuki, Masao, Yamada, Shigeru, Hayashi, Mitsuhiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8453446/
https://www.ncbi.nlm.nih.gov/pubmed/34556996
http://dx.doi.org/10.2147/OTT.S311567
Descripción
Sumario:PURPOSE: The study investigated the molecular mechanisms that killed pancreatic cancer cells, including cancer stem cells (CSCs), by carbon ion beam irradiation alone or in combination with miRNA-200c under in vitro and in vivo conditions. METHODS: Human pancreatic cancer (PC) cells, PANC1 and PK45, were treated with carbon-ion beam irradiation alone or in combination with microRNA-200c (miR-200c) mimic. Cell viability assay, colony and spheroid formation assay, quantitative real-time PCR analysis of apoptosis-, autophagy-, and angiogenesis-related gene expression, xenograft tumor control and histopathological analyses were performed. RESULTS: The cell viability assay showed that transfection of the miRNA-200c (10 nM) mimic into pancreatic CSC (CD44+/ESA+) and non-CSC (CD44-/ESA-) significantly suppressed proliferation of both types of cell populations described above. Combining carbon-ion beam irradiation with the miRNA-200c mimic significantly reduced the colony as well as spheroid formation abilities compared to that observed with the treatment of carbon-ion beam alone or X-ray irradiation combined with the miRNA-200c mimic. Moreover, the combination of carbon ion beam irradiation and miRNA-200c mimic increased the expression of apoptosis-related gene BAX, autophagy-related genes Beclin-1 and p62, addition of gemcitabine (GEM) further enhanced the expression of these genes. In vivo data showed that carbon-ion beam irradiation in combination with the miRNA-200c mimic effectively suppressed xenograft tumor growth and significantly induced tumor necrosis and cavitation. CONCLUSION: The combination of miRNA-200c mimic and carbon ion beam irradiation may be powerful radiotherapy that significantly kills pancreatic cancer cells containing CSCs and enhances the effect of carbon-ion beam irradiation compared to carbon-ion beam irradiation alone.