Cargando…
A machine learning strategy that leverages large datasets to boost statistical power in small-scale experiments
Machine learning methods have proven invaluable for increasing the sensitivity of peptide detection in proteomics experiments. Most modern tools, such as Percolator and PeptideProphet, use semi-supervised algorithms to learn models directly from the datasets that they analyze. Although these methods...
Autores principales: | Fondrie, William E., Noble, William S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8455073/ https://www.ncbi.nlm.nih.gov/pubmed/32009418 http://dx.doi.org/10.1021/acs.jproteome.9b00780 |
Ejemplares similares
-
mokapot: Fast
and Flexible Semisupervised Learning
for Peptide Detection
por: Fondrie, William E., et al.
Publicado: (2021) -
Statistics for data science: leverage the power of statistics for data analysis, classification, regression, machine learning, and neural networks
por: Miller, James D
Publicado: (2017) -
Recovering large-scale battery aging dataset with machine learning
por: Tang, Xiaopeng, et al.
Publicado: (2021) -
Leveraging machine learning predictive biomarkers to augment the statistical power of clinical trials with baseline magnetic resonance imaging
por: Lou, Carolyn, et al.
Publicado: (2021) -
ppx: Programmatic access to proteomics data repositories
por: Fondrie, William E, et al.
Publicado: (2021)