Cargando…
A DICOM Framework for Machine Learning and Processing Pipelines Against Real-time Radiology Images
Real-time execution of machine learning (ML) pipelines on radiology images is difficult due to limited computing resources in clinical environments, whereas running them in research clusters requires efficient data transfer capabilities. We developed Niffler, an open-source Digital Imaging and Commu...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8455728/ https://www.ncbi.nlm.nih.gov/pubmed/34405297 http://dx.doi.org/10.1007/s10278-021-00491-w |