Cargando…
A DICOM Framework for Machine Learning and Processing Pipelines Against Real-time Radiology Images
Real-time execution of machine learning (ML) pipelines on radiology images is difficult due to limited computing resources in clinical environments, whereas running them in research clusters requires efficient data transfer capabilities. We developed Niffler, an open-source Digital Imaging and Commu...
Autores principales: | Kathiravelu, Pradeeban, Sharma, Puneet, Sharma, Ashish, Banerjee, Imon, Trivedi, Hari, Purkayastha, Saptarshi, Sinha, Priyanshu, Cadrin-Chenevert, Alexandre, Safdar, Nabile, Gichoya, Judy Wawira |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8455728/ https://www.ncbi.nlm.nih.gov/pubmed/34405297 http://dx.doi.org/10.1007/s10278-021-00491-w |
Ejemplares similares
-
Understanding Scanner Utilization With Real-Time DICOM Metadata Extraction
por: KATHIRAVELU, PRADEEBAN, et al.
Publicado: (2021) -
AI pitfalls and what not to do: mitigating bias in AI
por: Gichoya, Judy Wawira, et al.
Publicado: (2023) -
Towards an internet-scale overlay network for latency-aware decentralized workflows at the edge
por: Kathiravelu, Pradeeban, et al.
Publicado: (2022) -
Patient-specific COVID-19 resource utilization prediction using fusion AI model
por: Tariq, Amara, et al.
Publicado: (2021) -
Automatic Classification of Cancer Pathology Reports: A Systematic Review
por: Santos, Thiago, et al.
Publicado: (2022)