Cargando…

Myosin-X and talin modulate integrin activity at filopodia tips

Filopodia assemble unique integrin-adhesion complexes to sense the extracellular matrix. However, the mechanisms of integrin regulation in filopodia are poorly defined. Here, we report that active integrins accumulate at the tip of myosin-X (MYO10)-positive filopodia, while inactive integrins are un...

Descripción completa

Detalles Bibliográficos
Autores principales: Miihkinen, Mitro, Grönloh, Max L.B., Popović, Ana, Vihinen, Helena, Jokitalo, Eija, Goult, Benjamin T., Ivaska, Johanna, Jacquemet, Guillaume
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456781/
https://www.ncbi.nlm.nih.gov/pubmed/34525374
http://dx.doi.org/10.1016/j.celrep.2021.109716
_version_ 1784570936753651712
author Miihkinen, Mitro
Grönloh, Max L.B.
Popović, Ana
Vihinen, Helena
Jokitalo, Eija
Goult, Benjamin T.
Ivaska, Johanna
Jacquemet, Guillaume
author_facet Miihkinen, Mitro
Grönloh, Max L.B.
Popović, Ana
Vihinen, Helena
Jokitalo, Eija
Goult, Benjamin T.
Ivaska, Johanna
Jacquemet, Guillaume
author_sort Miihkinen, Mitro
collection PubMed
description Filopodia assemble unique integrin-adhesion complexes to sense the extracellular matrix. However, the mechanisms of integrin regulation in filopodia are poorly defined. Here, we report that active integrins accumulate at the tip of myosin-X (MYO10)-positive filopodia, while inactive integrins are uniformly distributed. We identify talin and MYO10 as the principal integrin activators in filopodia. In addition, deletion of MYO10’s FERM domain, or mutation of its β1-integrin-binding residues, reveals MYO10 as facilitating integrin activation, but not transport, in filopodia. However, MYO10’s isolated FERM domain alone cannot activate integrins, potentially because of binding to both integrin tails. Finally, because a chimera construct generated by swapping MYO10-FERM by talin-FERM enables integrin activation in filopodia, our data indicate that an integrin-binding FERM domain coupled to a myosin motor is a core requirement for integrin activation in filopodia. Therefore, we propose a two-step integrin activation model in filopodia: receptor tethering by MYO10 followed by talin-mediated integrin activation.
format Online
Article
Text
id pubmed-8456781
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-84567812021-09-27 Myosin-X and talin modulate integrin activity at filopodia tips Miihkinen, Mitro Grönloh, Max L.B. Popović, Ana Vihinen, Helena Jokitalo, Eija Goult, Benjamin T. Ivaska, Johanna Jacquemet, Guillaume Cell Rep Article Filopodia assemble unique integrin-adhesion complexes to sense the extracellular matrix. However, the mechanisms of integrin regulation in filopodia are poorly defined. Here, we report that active integrins accumulate at the tip of myosin-X (MYO10)-positive filopodia, while inactive integrins are uniformly distributed. We identify talin and MYO10 as the principal integrin activators in filopodia. In addition, deletion of MYO10’s FERM domain, or mutation of its β1-integrin-binding residues, reveals MYO10 as facilitating integrin activation, but not transport, in filopodia. However, MYO10’s isolated FERM domain alone cannot activate integrins, potentially because of binding to both integrin tails. Finally, because a chimera construct generated by swapping MYO10-FERM by talin-FERM enables integrin activation in filopodia, our data indicate that an integrin-binding FERM domain coupled to a myosin motor is a core requirement for integrin activation in filopodia. Therefore, we propose a two-step integrin activation model in filopodia: receptor tethering by MYO10 followed by talin-mediated integrin activation. Cell Press 2021-09-14 /pmc/articles/PMC8456781/ /pubmed/34525374 http://dx.doi.org/10.1016/j.celrep.2021.109716 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Miihkinen, Mitro
Grönloh, Max L.B.
Popović, Ana
Vihinen, Helena
Jokitalo, Eija
Goult, Benjamin T.
Ivaska, Johanna
Jacquemet, Guillaume
Myosin-X and talin modulate integrin activity at filopodia tips
title Myosin-X and talin modulate integrin activity at filopodia tips
title_full Myosin-X and talin modulate integrin activity at filopodia tips
title_fullStr Myosin-X and talin modulate integrin activity at filopodia tips
title_full_unstemmed Myosin-X and talin modulate integrin activity at filopodia tips
title_short Myosin-X and talin modulate integrin activity at filopodia tips
title_sort myosin-x and talin modulate integrin activity at filopodia tips
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456781/
https://www.ncbi.nlm.nih.gov/pubmed/34525374
http://dx.doi.org/10.1016/j.celrep.2021.109716
work_keys_str_mv AT miihkinenmitro myosinxandtalinmodulateintegrinactivityatfilopodiatips
AT gronlohmaxlb myosinxandtalinmodulateintegrinactivityatfilopodiatips
AT popovicana myosinxandtalinmodulateintegrinactivityatfilopodiatips
AT vihinenhelena myosinxandtalinmodulateintegrinactivityatfilopodiatips
AT jokitaloeija myosinxandtalinmodulateintegrinactivityatfilopodiatips
AT goultbenjamint myosinxandtalinmodulateintegrinactivityatfilopodiatips
AT ivaskajohanna myosinxandtalinmodulateintegrinactivityatfilopodiatips
AT jacquemetguillaume myosinxandtalinmodulateintegrinactivityatfilopodiatips