Cargando…
Myosin-X and talin modulate integrin activity at filopodia tips
Filopodia assemble unique integrin-adhesion complexes to sense the extracellular matrix. However, the mechanisms of integrin regulation in filopodia are poorly defined. Here, we report that active integrins accumulate at the tip of myosin-X (MYO10)-positive filopodia, while inactive integrins are un...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456781/ https://www.ncbi.nlm.nih.gov/pubmed/34525374 http://dx.doi.org/10.1016/j.celrep.2021.109716 |
_version_ | 1784570936753651712 |
---|---|
author | Miihkinen, Mitro Grönloh, Max L.B. Popović, Ana Vihinen, Helena Jokitalo, Eija Goult, Benjamin T. Ivaska, Johanna Jacquemet, Guillaume |
author_facet | Miihkinen, Mitro Grönloh, Max L.B. Popović, Ana Vihinen, Helena Jokitalo, Eija Goult, Benjamin T. Ivaska, Johanna Jacquemet, Guillaume |
author_sort | Miihkinen, Mitro |
collection | PubMed |
description | Filopodia assemble unique integrin-adhesion complexes to sense the extracellular matrix. However, the mechanisms of integrin regulation in filopodia are poorly defined. Here, we report that active integrins accumulate at the tip of myosin-X (MYO10)-positive filopodia, while inactive integrins are uniformly distributed. We identify talin and MYO10 as the principal integrin activators in filopodia. In addition, deletion of MYO10’s FERM domain, or mutation of its β1-integrin-binding residues, reveals MYO10 as facilitating integrin activation, but not transport, in filopodia. However, MYO10’s isolated FERM domain alone cannot activate integrins, potentially because of binding to both integrin tails. Finally, because a chimera construct generated by swapping MYO10-FERM by talin-FERM enables integrin activation in filopodia, our data indicate that an integrin-binding FERM domain coupled to a myosin motor is a core requirement for integrin activation in filopodia. Therefore, we propose a two-step integrin activation model in filopodia: receptor tethering by MYO10 followed by talin-mediated integrin activation. |
format | Online Article Text |
id | pubmed-8456781 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-84567812021-09-27 Myosin-X and talin modulate integrin activity at filopodia tips Miihkinen, Mitro Grönloh, Max L.B. Popović, Ana Vihinen, Helena Jokitalo, Eija Goult, Benjamin T. Ivaska, Johanna Jacquemet, Guillaume Cell Rep Article Filopodia assemble unique integrin-adhesion complexes to sense the extracellular matrix. However, the mechanisms of integrin regulation in filopodia are poorly defined. Here, we report that active integrins accumulate at the tip of myosin-X (MYO10)-positive filopodia, while inactive integrins are uniformly distributed. We identify talin and MYO10 as the principal integrin activators in filopodia. In addition, deletion of MYO10’s FERM domain, or mutation of its β1-integrin-binding residues, reveals MYO10 as facilitating integrin activation, but not transport, in filopodia. However, MYO10’s isolated FERM domain alone cannot activate integrins, potentially because of binding to both integrin tails. Finally, because a chimera construct generated by swapping MYO10-FERM by talin-FERM enables integrin activation in filopodia, our data indicate that an integrin-binding FERM domain coupled to a myosin motor is a core requirement for integrin activation in filopodia. Therefore, we propose a two-step integrin activation model in filopodia: receptor tethering by MYO10 followed by talin-mediated integrin activation. Cell Press 2021-09-14 /pmc/articles/PMC8456781/ /pubmed/34525374 http://dx.doi.org/10.1016/j.celrep.2021.109716 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Miihkinen, Mitro Grönloh, Max L.B. Popović, Ana Vihinen, Helena Jokitalo, Eija Goult, Benjamin T. Ivaska, Johanna Jacquemet, Guillaume Myosin-X and talin modulate integrin activity at filopodia tips |
title | Myosin-X and talin modulate integrin activity at filopodia tips |
title_full | Myosin-X and talin modulate integrin activity at filopodia tips |
title_fullStr | Myosin-X and talin modulate integrin activity at filopodia tips |
title_full_unstemmed | Myosin-X and talin modulate integrin activity at filopodia tips |
title_short | Myosin-X and talin modulate integrin activity at filopodia tips |
title_sort | myosin-x and talin modulate integrin activity at filopodia tips |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456781/ https://www.ncbi.nlm.nih.gov/pubmed/34525374 http://dx.doi.org/10.1016/j.celrep.2021.109716 |
work_keys_str_mv | AT miihkinenmitro myosinxandtalinmodulateintegrinactivityatfilopodiatips AT gronlohmaxlb myosinxandtalinmodulateintegrinactivityatfilopodiatips AT popovicana myosinxandtalinmodulateintegrinactivityatfilopodiatips AT vihinenhelena myosinxandtalinmodulateintegrinactivityatfilopodiatips AT jokitaloeija myosinxandtalinmodulateintegrinactivityatfilopodiatips AT goultbenjamint myosinxandtalinmodulateintegrinactivityatfilopodiatips AT ivaskajohanna myosinxandtalinmodulateintegrinactivityatfilopodiatips AT jacquemetguillaume myosinxandtalinmodulateintegrinactivityatfilopodiatips |