Cargando…

Altered synaptic glutamate homeostasis contributes to cognitive decline in young APP/PSEN1 mice

Non-convulsive epileptiform activity is a common and under-studied comorbidity of Alzheimer’s disease that may significantly contribute to onset of clinical symptoms independently of other neuropathological features such as β-amyloid deposition. We used repeated treatment with low dose kainic acid (...

Descripción completa

Detalles Bibliográficos
Autores principales: Wilcox, J.M., Consoli, D.C., Tienda, A.A., Dixit, S., Buchanan, R.A., May, J.M., Nobis, W. P., Harrison, F.E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457528/
https://www.ncbi.nlm.nih.gov/pubmed/34450329
http://dx.doi.org/10.1016/j.nbd.2021.105486
Descripción
Sumario:Non-convulsive epileptiform activity is a common and under-studied comorbidity of Alzheimer’s disease that may significantly contribute to onset of clinical symptoms independently of other neuropathological features such as β-amyloid deposition. We used repeated treatment with low dose kainic acid (KA) to trigger subthreshold epileptiform activity in young (less than 6 months) wild-type (WT) and APP/PSEN1 mice to test the role of disruption to the glutamatergic system in epileptiform activity changes and the development of memory deficits. Short-term repeated low-dose KA (five daily treatments with 5 mg/kg, IP) impaired long-term potentiation in hippocampus of APP/PSEN1 but not WT mice. Long-term repeated low-dose KA (fourteen weeks of bi-weekly treatment with 7.5–10 mg/kg) led to high mortality in APP/PSEN1 mice. KA treatment also impaired memory retention in the APP/PSEN1 mice in a Morris water maze task under cognitively challenging reversal learning conditions where the platform was moved to a new location. Four weeks of bi-weekly treatment with 5 mg/kg KA also increased abnormal spike activity in APP/PSEN1 and not WT mice but did not impact sleep/wake behavioral states. These findings suggest that hyperexcitability in Alzheimer’s disease may indeed be an early contributor to cognitive decline that is independent of heavy β-amyloid-plaque load, which is absent in APP/PSEN1 mice under 6 months of age.