Cargando…

Disabling de novo DNA methylation in embryonic stem cells allows an illegitimate fate trajectory

Genome remethylation is essential for mammalian development but specific reasons are unclear. Here we examined embryonic stem (ES) cell fate in the absence of de novo DNA methyltransferases. We observed that ES cells deficient for both Dnmt3a and Dnmt3b are rapidly eliminated from chimeras. On furth...

Descripción completa

Detalles Bibliográficos
Autores principales: Kinoshita, Masaki, Li, Meng Amy, Barber, Michael, Mansfield, William, Dietmann, Sabine, Smith, Austin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8463881/
https://www.ncbi.nlm.nih.gov/pubmed/34518230
http://dx.doi.org/10.1073/pnas.2109475118
_version_ 1784572491555930112
author Kinoshita, Masaki
Li, Meng Amy
Barber, Michael
Mansfield, William
Dietmann, Sabine
Smith, Austin
author_facet Kinoshita, Masaki
Li, Meng Amy
Barber, Michael
Mansfield, William
Dietmann, Sabine
Smith, Austin
author_sort Kinoshita, Masaki
collection PubMed
description Genome remethylation is essential for mammalian development but specific reasons are unclear. Here we examined embryonic stem (ES) cell fate in the absence of de novo DNA methyltransferases. We observed that ES cells deficient for both Dnmt3a and Dnmt3b are rapidly eliminated from chimeras. On further investigation we found that in vivo and in vitro the formative pluripotency transition is derailed toward production of trophoblast. This aberrant trajectory is associated with failure to suppress activation of Ascl2. Ascl2 encodes a bHLH transcription factor expressed in the placenta. Misexpression of Ascl2 in ES cells provokes transdifferentiation to trophoblast-like cells. Conversely, Ascl2 deletion rescues formative transition of Dnmt3a/b mutants and improves contribution to chimeric epiblast. Thus, de novo DNA methylation safeguards against ectopic activation of Ascl2. However, Dnmt3a/b-deficient cells remain defective in ongoing embryogenesis. We surmise that multiple developmental transitions may be secured by DNA methylation silencing potentially disruptive genes.
format Online
Article
Text
id pubmed-8463881
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-84638812021-10-27 Disabling de novo DNA methylation in embryonic stem cells allows an illegitimate fate trajectory Kinoshita, Masaki Li, Meng Amy Barber, Michael Mansfield, William Dietmann, Sabine Smith, Austin Proc Natl Acad Sci U S A Biological Sciences Genome remethylation is essential for mammalian development but specific reasons are unclear. Here we examined embryonic stem (ES) cell fate in the absence of de novo DNA methyltransferases. We observed that ES cells deficient for both Dnmt3a and Dnmt3b are rapidly eliminated from chimeras. On further investigation we found that in vivo and in vitro the formative pluripotency transition is derailed toward production of trophoblast. This aberrant trajectory is associated with failure to suppress activation of Ascl2. Ascl2 encodes a bHLH transcription factor expressed in the placenta. Misexpression of Ascl2 in ES cells provokes transdifferentiation to trophoblast-like cells. Conversely, Ascl2 deletion rescues formative transition of Dnmt3a/b mutants and improves contribution to chimeric epiblast. Thus, de novo DNA methylation safeguards against ectopic activation of Ascl2. However, Dnmt3a/b-deficient cells remain defective in ongoing embryogenesis. We surmise that multiple developmental transitions may be secured by DNA methylation silencing potentially disruptive genes. National Academy of Sciences 2021-09-21 2021-09-13 /pmc/articles/PMC8463881/ /pubmed/34518230 http://dx.doi.org/10.1073/pnas.2109475118 Text en Copyright © 2021 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by/4.0/This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Biological Sciences
Kinoshita, Masaki
Li, Meng Amy
Barber, Michael
Mansfield, William
Dietmann, Sabine
Smith, Austin
Disabling de novo DNA methylation in embryonic stem cells allows an illegitimate fate trajectory
title Disabling de novo DNA methylation in embryonic stem cells allows an illegitimate fate trajectory
title_full Disabling de novo DNA methylation in embryonic stem cells allows an illegitimate fate trajectory
title_fullStr Disabling de novo DNA methylation in embryonic stem cells allows an illegitimate fate trajectory
title_full_unstemmed Disabling de novo DNA methylation in embryonic stem cells allows an illegitimate fate trajectory
title_short Disabling de novo DNA methylation in embryonic stem cells allows an illegitimate fate trajectory
title_sort disabling de novo dna methylation in embryonic stem cells allows an illegitimate fate trajectory
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8463881/
https://www.ncbi.nlm.nih.gov/pubmed/34518230
http://dx.doi.org/10.1073/pnas.2109475118
work_keys_str_mv AT kinoshitamasaki disablingdenovodnamethylationinembryonicstemcellsallowsanillegitimatefatetrajectory
AT limengamy disablingdenovodnamethylationinembryonicstemcellsallowsanillegitimatefatetrajectory
AT barbermichael disablingdenovodnamethylationinembryonicstemcellsallowsanillegitimatefatetrajectory
AT mansfieldwilliam disablingdenovodnamethylationinembryonicstemcellsallowsanillegitimatefatetrajectory
AT dietmannsabine disablingdenovodnamethylationinembryonicstemcellsallowsanillegitimatefatetrajectory
AT smithaustin disablingdenovodnamethylationinembryonicstemcellsallowsanillegitimatefatetrajectory