Cargando…
Structural recognition of the mRNA 3′ UTR by PUF-8 restricts the lifespan of C. elegans
The molecular mechanisms of aging are unsolved fundamental biological questions. Caenorhabditis elegans is an ideal model organism for investigating aging. PUF-8, a PUF (Pumilio and FBF) protein in C. elegans, is crucial for germline development through binding with the 3′ untranslated regions (3′ U...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8464079/ https://www.ncbi.nlm.nih.gov/pubmed/34478557 http://dx.doi.org/10.1093/nar/gkab754 |
Sumario: | The molecular mechanisms of aging are unsolved fundamental biological questions. Caenorhabditis elegans is an ideal model organism for investigating aging. PUF-8, a PUF (Pumilio and FBF) protein in C. elegans, is crucial for germline development through binding with the 3′ untranslated regions (3′ UTR) in the target mRNAs. Recently, PUF-8 was reported to alter mitochondrial dynamics and mitophagy by regulating MFF-1, a mitochondrial fission factor, and subsequently regulated longevity. Here, we determined the crystal structure of the PUF domain of PUF-8 with an RNA substrate. Mutagenesis experiments were performed to alter PUF-8 recognition of its target mRNAs. Those mutations reduced the fertility and extended the lifespan of C. elegans. Deep sequencing of total mRNAs from wild-type and puf-8 mutant worms as well as in vivo RNA Crosslinking and Immunoprecipitation (CLIP) experiments identified six PUF-8 regulated genes, which contain at least one PUF-binding element (PBE) at the 3′ UTR. One of the six genes, pqm-1, is crucial for lipid storage and aging process. Knockdown of pqm-1 could revert the lifespan extension of puf-8 mutant animals. We conclude that PUF-8 regulate the lifespan of C. elegans may not only via MFF but also via modulating pqm-1-related pathways. |
---|