Cargando…
VAV Proteins as Double Agents in Cancer: Oncogenes with Tumor Suppressor Roles
SIMPLE SUMMARY: The role of the VAV family (comprised of VAV1, VAV2, and VAV3) in proactive pathways involved in cell transformation has been historically assumed. Indeed, the discovery of potential gain-of-function VAV1 mutations in specific tumor subtypes reinforced this functional archetype. Cont...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8466051/ https://www.ncbi.nlm.nih.gov/pubmed/34571765 http://dx.doi.org/10.3390/biology10090888 |
Sumario: | SIMPLE SUMMARY: The role of the VAV family (comprised of VAV1, VAV2, and VAV3) in proactive pathways involved in cell transformation has been historically assumed. Indeed, the discovery of potential gain-of-function VAV1 mutations in specific tumor subtypes reinforced this functional archetype. Contrary to this paradigm, we demonstrated that VAV1 could unexpectedly act as a tumor suppressor in some in vivo contexts. In this review, we discuss recent findings in the field, where the emerging landscape is one in which GTPases and their regulators, such as VAV proteins, can exhibit tumor suppressor functions. ABSTRACT: Guanosine nucleotide exchange factors (GEFs) are responsible for catalyzing the transition of small GTPases from the inactive (GDP-bound) to the active (GTP-bound) states. RHO GEFs, including VAV proteins, play essential signaling roles in a wide variety of fundamental cellular processes and in human diseases. Although the most widespread archetype in the field is that RHO GEFs exert proactive functions in cancer, recent studies in mice and humans are providing new insights into the in vivo function of these proteins in cancer. These results suggest a more complex scenario where the role of GEFs is not so clearly defined. For example, VAV1 can unexpectedly play non-catalytic tumor suppressor functions in T-cell acute lymphoblastic leukemia (T-ALL) by controlling the levels of the active form of NOTCH1 (ICN1). This review focuses on emerging work unveiling tumor suppressor roles for these proteins that should prompt a reevaluation of the role of VAV GEF family in tumor biology. |
---|