Cargando…
Cytotoxic Marine Alkaloid 3,10-Dibromofascaplysin Induces Apoptosis and Synergizes with Cytarabine Resulting in Leukemia Cell Death
Myeloid leukemia is a hematologic neoplasia characterized by a clonal proliferation of hematopoietic stem cell progenitors. Patient prognosis varies depending on the subtype of leukemia as well as eligibility for intensive treatment regimens and allogeneic stem cell transplantation. Although signifi...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468638/ https://www.ncbi.nlm.nih.gov/pubmed/34564151 http://dx.doi.org/10.3390/md19090489 |
_version_ | 1784573722210861056 |
---|---|
author | Spirin, Pavel Shyrokova, Elena Lebedev, Timofey Vagapova, Elmira Smirnova, Polina Kantemirov, Alexey Dyshlovoy, Sergey A. von Amsberg, Gunhild Zhidkov, Maxim Prassolov, Vladimir |
author_facet | Spirin, Pavel Shyrokova, Elena Lebedev, Timofey Vagapova, Elmira Smirnova, Polina Kantemirov, Alexey Dyshlovoy, Sergey A. von Amsberg, Gunhild Zhidkov, Maxim Prassolov, Vladimir |
author_sort | Spirin, Pavel |
collection | PubMed |
description | Myeloid leukemia is a hematologic neoplasia characterized by a clonal proliferation of hematopoietic stem cell progenitors. Patient prognosis varies depending on the subtype of leukemia as well as eligibility for intensive treatment regimens and allogeneic stem cell transplantation. Although significant progress has been made in the therapy of patients including novel targeted treatment approaches, there is still an urgent need to optimize treatment outcome. The most common therapy is based on the use of chemotherapeutics cytarabine and anthrayclines. Here, we studied the effect of the recently synthesized marine alkaloid 3,10-dibromofascaplysin (DBF) in myeloid leukemia cells. Unsubstituted fascaplysin was early found to affect cell cycle via inhibiting CDK4/6, thus we compared the activity of DBF and other brominated derivatives with known CDK4/6 inhibitor palbociclib, which was earlier shown to be a promising candidate to treat leukemia. Unexpectedly, the effect DBF on cell cycle differs from palbociclib. In fact, DBF induced leukemic cells apoptosis and decreased the expression of genes responsible for cancer cell survival. Simultaneously, DBF was found to activate the E2F1 transcription factor. Using bioinformatical approaches we evaluated the possible molecular mechanisms, which may be associated with DBF-induced activation of E2F1. Finally, we found that DBF synergistically increase the cytotoxic effect of cytarabine in different myeloid leukemia cell lines. In conclusion, DBF is a promising drug candidate, which may be used in combinational therapeutics approaches to reduce leukemia cell growth. |
format | Online Article Text |
id | pubmed-8468638 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84686382021-09-27 Cytotoxic Marine Alkaloid 3,10-Dibromofascaplysin Induces Apoptosis and Synergizes with Cytarabine Resulting in Leukemia Cell Death Spirin, Pavel Shyrokova, Elena Lebedev, Timofey Vagapova, Elmira Smirnova, Polina Kantemirov, Alexey Dyshlovoy, Sergey A. von Amsberg, Gunhild Zhidkov, Maxim Prassolov, Vladimir Mar Drugs Article Myeloid leukemia is a hematologic neoplasia characterized by a clonal proliferation of hematopoietic stem cell progenitors. Patient prognosis varies depending on the subtype of leukemia as well as eligibility for intensive treatment regimens and allogeneic stem cell transplantation. Although significant progress has been made in the therapy of patients including novel targeted treatment approaches, there is still an urgent need to optimize treatment outcome. The most common therapy is based on the use of chemotherapeutics cytarabine and anthrayclines. Here, we studied the effect of the recently synthesized marine alkaloid 3,10-dibromofascaplysin (DBF) in myeloid leukemia cells. Unsubstituted fascaplysin was early found to affect cell cycle via inhibiting CDK4/6, thus we compared the activity of DBF and other brominated derivatives with known CDK4/6 inhibitor palbociclib, which was earlier shown to be a promising candidate to treat leukemia. Unexpectedly, the effect DBF on cell cycle differs from palbociclib. In fact, DBF induced leukemic cells apoptosis and decreased the expression of genes responsible for cancer cell survival. Simultaneously, DBF was found to activate the E2F1 transcription factor. Using bioinformatical approaches we evaluated the possible molecular mechanisms, which may be associated with DBF-induced activation of E2F1. Finally, we found that DBF synergistically increase the cytotoxic effect of cytarabine in different myeloid leukemia cell lines. In conclusion, DBF is a promising drug candidate, which may be used in combinational therapeutics approaches to reduce leukemia cell growth. MDPI 2021-08-27 /pmc/articles/PMC8468638/ /pubmed/34564151 http://dx.doi.org/10.3390/md19090489 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Spirin, Pavel Shyrokova, Elena Lebedev, Timofey Vagapova, Elmira Smirnova, Polina Kantemirov, Alexey Dyshlovoy, Sergey A. von Amsberg, Gunhild Zhidkov, Maxim Prassolov, Vladimir Cytotoxic Marine Alkaloid 3,10-Dibromofascaplysin Induces Apoptosis and Synergizes with Cytarabine Resulting in Leukemia Cell Death |
title | Cytotoxic Marine Alkaloid 3,10-Dibromofascaplysin Induces Apoptosis and Synergizes with Cytarabine Resulting in Leukemia Cell Death |
title_full | Cytotoxic Marine Alkaloid 3,10-Dibromofascaplysin Induces Apoptosis and Synergizes with Cytarabine Resulting in Leukemia Cell Death |
title_fullStr | Cytotoxic Marine Alkaloid 3,10-Dibromofascaplysin Induces Apoptosis and Synergizes with Cytarabine Resulting in Leukemia Cell Death |
title_full_unstemmed | Cytotoxic Marine Alkaloid 3,10-Dibromofascaplysin Induces Apoptosis and Synergizes with Cytarabine Resulting in Leukemia Cell Death |
title_short | Cytotoxic Marine Alkaloid 3,10-Dibromofascaplysin Induces Apoptosis and Synergizes with Cytarabine Resulting in Leukemia Cell Death |
title_sort | cytotoxic marine alkaloid 3,10-dibromofascaplysin induces apoptosis and synergizes with cytarabine resulting in leukemia cell death |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468638/ https://www.ncbi.nlm.nih.gov/pubmed/34564151 http://dx.doi.org/10.3390/md19090489 |
work_keys_str_mv | AT spirinpavel cytotoxicmarinealkaloid310dibromofascaplysininducesapoptosisandsynergizeswithcytarabineresultinginleukemiacelldeath AT shyrokovaelena cytotoxicmarinealkaloid310dibromofascaplysininducesapoptosisandsynergizeswithcytarabineresultinginleukemiacelldeath AT lebedevtimofey cytotoxicmarinealkaloid310dibromofascaplysininducesapoptosisandsynergizeswithcytarabineresultinginleukemiacelldeath AT vagapovaelmira cytotoxicmarinealkaloid310dibromofascaplysininducesapoptosisandsynergizeswithcytarabineresultinginleukemiacelldeath AT smirnovapolina cytotoxicmarinealkaloid310dibromofascaplysininducesapoptosisandsynergizeswithcytarabineresultinginleukemiacelldeath AT kantemirovalexey cytotoxicmarinealkaloid310dibromofascaplysininducesapoptosisandsynergizeswithcytarabineresultinginleukemiacelldeath AT dyshlovoysergeya cytotoxicmarinealkaloid310dibromofascaplysininducesapoptosisandsynergizeswithcytarabineresultinginleukemiacelldeath AT vonamsberggunhild cytotoxicmarinealkaloid310dibromofascaplysininducesapoptosisandsynergizeswithcytarabineresultinginleukemiacelldeath AT zhidkovmaxim cytotoxicmarinealkaloid310dibromofascaplysininducesapoptosisandsynergizeswithcytarabineresultinginleukemiacelldeath AT prassolovvladimir cytotoxicmarinealkaloid310dibromofascaplysininducesapoptosisandsynergizeswithcytarabineresultinginleukemiacelldeath |