Cargando…

PBPK Modeling as a Tool for Predicting and Understanding Intestinal Metabolism of Uridine 5′-Diphospho-glucuronosyltransferase Substrates

Uridine 5′-diphospho-glucuronosyltransferases (UGTs) are expressed in the small intestines, but prediction of first-pass extraction from the related metabolism is not well studied. This work assesses physiologically based pharmacokinetic (PBPK) modeling as a tool for predicting intestinal metabolism...

Descripción completa

Detalles Bibliográficos
Autores principales: Reddy, Micaela B., Bolger, Michael B., Fraczkiewicz, Grace, Del Frari, Laurence, Luo, Laibin, Lukacova, Viera, Mitra, Amitava, Macwan, Joyce S., Mullin, Jim M., Parrott, Neil, Heikkinen, Aki T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468656/
https://www.ncbi.nlm.nih.gov/pubmed/34575401
http://dx.doi.org/10.3390/pharmaceutics13091325
_version_ 1784573726911627264
author Reddy, Micaela B.
Bolger, Michael B.
Fraczkiewicz, Grace
Del Frari, Laurence
Luo, Laibin
Lukacova, Viera
Mitra, Amitava
Macwan, Joyce S.
Mullin, Jim M.
Parrott, Neil
Heikkinen, Aki T.
author_facet Reddy, Micaela B.
Bolger, Michael B.
Fraczkiewicz, Grace
Del Frari, Laurence
Luo, Laibin
Lukacova, Viera
Mitra, Amitava
Macwan, Joyce S.
Mullin, Jim M.
Parrott, Neil
Heikkinen, Aki T.
author_sort Reddy, Micaela B.
collection PubMed
description Uridine 5′-diphospho-glucuronosyltransferases (UGTs) are expressed in the small intestines, but prediction of first-pass extraction from the related metabolism is not well studied. This work assesses physiologically based pharmacokinetic (PBPK) modeling as a tool for predicting intestinal metabolism due to UGTs in the human gastrointestinal tract. Available data for intestinal UGT expression levels and in vitro approaches that can be used to predict intestinal metabolism of UGT substrates are reviewed. Human PBPK models for UGT substrates with varying extents of UGT-mediated intestinal metabolism (lorazepam, oxazepam, naloxone, zidovudine, cabotegravir, raltegravir, and dolutegravir) have demonstrated utility for predicting the extent of intestinal metabolism. Drug–drug interactions (DDIs) of UGT1A1 substrates dolutegravir and raltegravir with UGT1A1 inhibitor atazanavir have been simulated, and the role of intestinal metabolism in these clinical DDIs examined. Utility of an in silico tool for predicting substrate specificity for UGTs is discussed. Improved in vitro tools to study metabolism for UGT compounds, such as coculture models for low clearance compounds and better understanding of optimal conditions for in vitro studies, may provide an opportunity for improved in vitro–in vivo extrapolation (IVIVE) and prospective predictions. PBPK modeling shows promise as a useful tool for predicting intestinal metabolism for UGT substrates.
format Online
Article
Text
id pubmed-8468656
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-84686562021-09-27 PBPK Modeling as a Tool for Predicting and Understanding Intestinal Metabolism of Uridine 5′-Diphospho-glucuronosyltransferase Substrates Reddy, Micaela B. Bolger, Michael B. Fraczkiewicz, Grace Del Frari, Laurence Luo, Laibin Lukacova, Viera Mitra, Amitava Macwan, Joyce S. Mullin, Jim M. Parrott, Neil Heikkinen, Aki T. Pharmaceutics Review Uridine 5′-diphospho-glucuronosyltransferases (UGTs) are expressed in the small intestines, but prediction of first-pass extraction from the related metabolism is not well studied. This work assesses physiologically based pharmacokinetic (PBPK) modeling as a tool for predicting intestinal metabolism due to UGTs in the human gastrointestinal tract. Available data for intestinal UGT expression levels and in vitro approaches that can be used to predict intestinal metabolism of UGT substrates are reviewed. Human PBPK models for UGT substrates with varying extents of UGT-mediated intestinal metabolism (lorazepam, oxazepam, naloxone, zidovudine, cabotegravir, raltegravir, and dolutegravir) have demonstrated utility for predicting the extent of intestinal metabolism. Drug–drug interactions (DDIs) of UGT1A1 substrates dolutegravir and raltegravir with UGT1A1 inhibitor atazanavir have been simulated, and the role of intestinal metabolism in these clinical DDIs examined. Utility of an in silico tool for predicting substrate specificity for UGTs is discussed. Improved in vitro tools to study metabolism for UGT compounds, such as coculture models for low clearance compounds and better understanding of optimal conditions for in vitro studies, may provide an opportunity for improved in vitro–in vivo extrapolation (IVIVE) and prospective predictions. PBPK modeling shows promise as a useful tool for predicting intestinal metabolism for UGT substrates. MDPI 2021-08-24 /pmc/articles/PMC8468656/ /pubmed/34575401 http://dx.doi.org/10.3390/pharmaceutics13091325 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Reddy, Micaela B.
Bolger, Michael B.
Fraczkiewicz, Grace
Del Frari, Laurence
Luo, Laibin
Lukacova, Viera
Mitra, Amitava
Macwan, Joyce S.
Mullin, Jim M.
Parrott, Neil
Heikkinen, Aki T.
PBPK Modeling as a Tool for Predicting and Understanding Intestinal Metabolism of Uridine 5′-Diphospho-glucuronosyltransferase Substrates
title PBPK Modeling as a Tool for Predicting and Understanding Intestinal Metabolism of Uridine 5′-Diphospho-glucuronosyltransferase Substrates
title_full PBPK Modeling as a Tool for Predicting and Understanding Intestinal Metabolism of Uridine 5′-Diphospho-glucuronosyltransferase Substrates
title_fullStr PBPK Modeling as a Tool for Predicting and Understanding Intestinal Metabolism of Uridine 5′-Diphospho-glucuronosyltransferase Substrates
title_full_unstemmed PBPK Modeling as a Tool for Predicting and Understanding Intestinal Metabolism of Uridine 5′-Diphospho-glucuronosyltransferase Substrates
title_short PBPK Modeling as a Tool for Predicting and Understanding Intestinal Metabolism of Uridine 5′-Diphospho-glucuronosyltransferase Substrates
title_sort pbpk modeling as a tool for predicting and understanding intestinal metabolism of uridine 5′-diphospho-glucuronosyltransferase substrates
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468656/
https://www.ncbi.nlm.nih.gov/pubmed/34575401
http://dx.doi.org/10.3390/pharmaceutics13091325
work_keys_str_mv AT reddymicaelab pbpkmodelingasatoolforpredictingandunderstandingintestinalmetabolismofuridine5diphosphoglucuronosyltransferasesubstrates
AT bolgermichaelb pbpkmodelingasatoolforpredictingandunderstandingintestinalmetabolismofuridine5diphosphoglucuronosyltransferasesubstrates
AT fraczkiewiczgrace pbpkmodelingasatoolforpredictingandunderstandingintestinalmetabolismofuridine5diphosphoglucuronosyltransferasesubstrates
AT delfrarilaurence pbpkmodelingasatoolforpredictingandunderstandingintestinalmetabolismofuridine5diphosphoglucuronosyltransferasesubstrates
AT luolaibin pbpkmodelingasatoolforpredictingandunderstandingintestinalmetabolismofuridine5diphosphoglucuronosyltransferasesubstrates
AT lukacovaviera pbpkmodelingasatoolforpredictingandunderstandingintestinalmetabolismofuridine5diphosphoglucuronosyltransferasesubstrates
AT mitraamitava pbpkmodelingasatoolforpredictingandunderstandingintestinalmetabolismofuridine5diphosphoglucuronosyltransferasesubstrates
AT macwanjoyces pbpkmodelingasatoolforpredictingandunderstandingintestinalmetabolismofuridine5diphosphoglucuronosyltransferasesubstrates
AT mullinjimm pbpkmodelingasatoolforpredictingandunderstandingintestinalmetabolismofuridine5diphosphoglucuronosyltransferasesubstrates
AT parrottneil pbpkmodelingasatoolforpredictingandunderstandingintestinalmetabolismofuridine5diphosphoglucuronosyltransferasesubstrates
AT heikkinenakit pbpkmodelingasatoolforpredictingandunderstandingintestinalmetabolismofuridine5diphosphoglucuronosyltransferasesubstrates