Cargando…

Comparative Analysis of the Chemical Composition and Physicochemical Properties of the Mucilage Extracted from Fresh and Dehydrated Opuntia ficus indica Cladodes

The development of sustainable extraction methods to obtain natural products constitutes a challenge for the food industry. The aim of this work was to compare yield, separation efficiency, chemical composition, and physicochemical properties of the mucilage extracted from fresh cladodes (FNM) and m...

Descripción completa

Detalles Bibliográficos
Autores principales: Quintero-García, Michelle, Gutiérrez-Cortez, Elsa, Bah, Moustapha, Rojas-Molina, Alejandra, Cornejo-Villegas, María de los Angeles, Del Real, Alicia, Rojas-Molina, Isela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8471229/
https://www.ncbi.nlm.nih.gov/pubmed/34574247
http://dx.doi.org/10.3390/foods10092137
Descripción
Sumario:The development of sustainable extraction methods to obtain natural products constitutes a challenge for the food industry. The aim of this work was to compare yield, separation efficiency, chemical composition, and physicochemical properties of the mucilage extracted from fresh cladodes (FNM) and mucilage extracted from dehydrated cladodes (DNM) of O. ficus indica. Suspensions of fresh and dehydrated cladodes (4% w/w) were prepared for mucilage extraction by using a mechanical separation process. Subsequently, the separated mucilage was precipitated with ethyl alcohol (1:2 v/v) then, yield and separation efficiency were determined. The mucilage was characterized by measuring Z potential, viscosity, color, and texture attributes. Additionally, chemical proximate analysis, scanning electron microscopy, and thermogravimetric analysis (TGA) were conducted. No significant differences (p < 0.05) were detected in the yield and separation efficiencies between samples. Nevertheless, the dehydration process of cladodes prior to mucilage extraction increased protein, ashes, nitrogen free extract, and calcium content. The viscosity was higher in DNM than in FNM. The TGA revealed a different thermal behavior between samples. In addition, the DNM showed lower L (darkness/lightness), cohesiveness, adhesiveness, and springiness values than those of FNM. These results support that differences found between the chemical and physicochemical properties of DNM and those of FNM will determine the applications of the mucilage obtained from the O. ficus indica cladodes in the food, pharmaceutical, and cosmetic industries.