Cargando…
Dimensionality Reduction of SPD Data Based on Riemannian Manifold Tangent Spaces and Isometry
Symmetric positive definite (SPD) data have become a hot topic in machine learning. Instead of a linear Euclidean space, SPD data generally lie on a nonlinear Riemannian manifold. To get over the problems caused by the high data dimensionality, dimensionality reduction (DR) is a key subject for SPD...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8471569/ https://www.ncbi.nlm.nih.gov/pubmed/34573742 http://dx.doi.org/10.3390/e23091117 |