Cargando…
Dimensionality Reduction of SPD Data Based on Riemannian Manifold Tangent Spaces and Isometry
Symmetric positive definite (SPD) data have become a hot topic in machine learning. Instead of a linear Euclidean space, SPD data generally lie on a nonlinear Riemannian manifold. To get over the problems caused by the high data dimensionality, dimensionality reduction (DR) is a key subject for SPD...
Autores principales: | Gao, Wenxu, Ma, Zhengming, Gan, Weichao, Liu, Shuyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8471569/ https://www.ncbi.nlm.nih.gov/pubmed/34573742 http://dx.doi.org/10.3390/e23091117 |
Ejemplares similares
-
Weakly symmetric Riemannian spaces with reductive isometry group
por: Yakimova, O S
Publicado: (2003) -
Sobolev spaces on Riemannian manifolds
por: Hebey, Emmanuel
Publicado: (1996) -
On the infinitesimal isometries of manifolds with Killing spinors
por: Moroianu, A
Publicado: (1996) -
Isometric embedding of Riemannian manifolds in Euclidean spaces
por: Han, Qing, et al.
Publicado: (2014) -
Riemannian manifolds : an introduction to curvature /
por: Lee, John M., 1950-
Publicado: (1997)