Cargando…
Extraction of Phenolic Compounds with Antioxidant Activity from Strawberries: Modelling with Artificial Neural Networks (ANNs)
This research study focuses on the evaluation of the total phenolic compounds (TPC) and antioxidant activity (AOA) of strawberries according to different experimental extraction conditions by applying the Artificial Neural Networks (ANNs) technique. The experimental data were applied to train ANNs u...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8472351/ https://www.ncbi.nlm.nih.gov/pubmed/34574338 http://dx.doi.org/10.3390/foods10092228 |
_version_ | 1784574706523832320 |
---|---|
author | Golpour, Iman Ferrão, Ana Cristina Gonçalves, Fernando Correia, Paula M. R. Blanco-Marigorta, Ana M. Guiné, Raquel P. F. |
author_facet | Golpour, Iman Ferrão, Ana Cristina Gonçalves, Fernando Correia, Paula M. R. Blanco-Marigorta, Ana M. Guiné, Raquel P. F. |
author_sort | Golpour, Iman |
collection | PubMed |
description | This research study focuses on the evaluation of the total phenolic compounds (TPC) and antioxidant activity (AOA) of strawberries according to different experimental extraction conditions by applying the Artificial Neural Networks (ANNs) technique. The experimental data were applied to train ANNs using feed- and cascade-forward backpropagation models with Levenberg-Marquardt (LM) and Bayesian Regulation (BR) algorithms. Three independent variables (solvent concentration, volume/mass ratio and extraction time) were used as ANN inputs, whereas the three variables of total phenolic compounds, DPPH and ABTS antioxidant activities were considered as ANN outputs. The results demonstrate that the best cascade- and feed-forward backpropagation topologies of ANNs for the prediction of total phenolic compounds and DPPH and ABTS antioxidant activity factors were the 3-9-1, 3-4-4-1 and 3-13-10-1 structures, with the training algorithms of trainlm, trainbr, trainlm and threshold functions of tansig-purelin, tansig-tansig-tansig and purelin-tansig-tansig, respectively. The best R(2) values for the predication of total phenolic compounds and DPPH and ABTS antioxidant activity factors were 0.9806 (MSE = 0.0047), 0.9651 (MSE = 0.0035) and 0.9756 (MSE = 0.00286), respectively. According to the comparison of ANNs, the results showed that the cascade-forward backpropagation network showed better performance than the feed-forward backpropagation network for predicting the TPC, and the FFBP network, in predicting the DPPH and ABTS antioxidant activity factors, had more precision than the cascade-forward backpropagation network. The ANN technique is a potential method for estimating targeted total phenolic compounds and the antioxidant activity of strawberries. |
format | Online Article Text |
id | pubmed-8472351 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84723512021-09-28 Extraction of Phenolic Compounds with Antioxidant Activity from Strawberries: Modelling with Artificial Neural Networks (ANNs) Golpour, Iman Ferrão, Ana Cristina Gonçalves, Fernando Correia, Paula M. R. Blanco-Marigorta, Ana M. Guiné, Raquel P. F. Foods Article This research study focuses on the evaluation of the total phenolic compounds (TPC) and antioxidant activity (AOA) of strawberries according to different experimental extraction conditions by applying the Artificial Neural Networks (ANNs) technique. The experimental data were applied to train ANNs using feed- and cascade-forward backpropagation models with Levenberg-Marquardt (LM) and Bayesian Regulation (BR) algorithms. Three independent variables (solvent concentration, volume/mass ratio and extraction time) were used as ANN inputs, whereas the three variables of total phenolic compounds, DPPH and ABTS antioxidant activities were considered as ANN outputs. The results demonstrate that the best cascade- and feed-forward backpropagation topologies of ANNs for the prediction of total phenolic compounds and DPPH and ABTS antioxidant activity factors were the 3-9-1, 3-4-4-1 and 3-13-10-1 structures, with the training algorithms of trainlm, trainbr, trainlm and threshold functions of tansig-purelin, tansig-tansig-tansig and purelin-tansig-tansig, respectively. The best R(2) values for the predication of total phenolic compounds and DPPH and ABTS antioxidant activity factors were 0.9806 (MSE = 0.0047), 0.9651 (MSE = 0.0035) and 0.9756 (MSE = 0.00286), respectively. According to the comparison of ANNs, the results showed that the cascade-forward backpropagation network showed better performance than the feed-forward backpropagation network for predicting the TPC, and the FFBP network, in predicting the DPPH and ABTS antioxidant activity factors, had more precision than the cascade-forward backpropagation network. The ANN technique is a potential method for estimating targeted total phenolic compounds and the antioxidant activity of strawberries. MDPI 2021-09-20 /pmc/articles/PMC8472351/ /pubmed/34574338 http://dx.doi.org/10.3390/foods10092228 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Golpour, Iman Ferrão, Ana Cristina Gonçalves, Fernando Correia, Paula M. R. Blanco-Marigorta, Ana M. Guiné, Raquel P. F. Extraction of Phenolic Compounds with Antioxidant Activity from Strawberries: Modelling with Artificial Neural Networks (ANNs) |
title | Extraction of Phenolic Compounds with Antioxidant Activity from Strawberries: Modelling with Artificial Neural Networks (ANNs) |
title_full | Extraction of Phenolic Compounds with Antioxidant Activity from Strawberries: Modelling with Artificial Neural Networks (ANNs) |
title_fullStr | Extraction of Phenolic Compounds with Antioxidant Activity from Strawberries: Modelling with Artificial Neural Networks (ANNs) |
title_full_unstemmed | Extraction of Phenolic Compounds with Antioxidant Activity from Strawberries: Modelling with Artificial Neural Networks (ANNs) |
title_short | Extraction of Phenolic Compounds with Antioxidant Activity from Strawberries: Modelling with Artificial Neural Networks (ANNs) |
title_sort | extraction of phenolic compounds with antioxidant activity from strawberries: modelling with artificial neural networks (anns) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8472351/ https://www.ncbi.nlm.nih.gov/pubmed/34574338 http://dx.doi.org/10.3390/foods10092228 |
work_keys_str_mv | AT golpouriman extractionofphenoliccompoundswithantioxidantactivityfromstrawberriesmodellingwithartificialneuralnetworksanns AT ferraoanacristina extractionofphenoliccompoundswithantioxidantactivityfromstrawberriesmodellingwithartificialneuralnetworksanns AT goncalvesfernando extractionofphenoliccompoundswithantioxidantactivityfromstrawberriesmodellingwithartificialneuralnetworksanns AT correiapaulamr extractionofphenoliccompoundswithantioxidantactivityfromstrawberriesmodellingwithartificialneuralnetworksanns AT blancomarigortaanam extractionofphenoliccompoundswithantioxidantactivityfromstrawberriesmodellingwithartificialneuralnetworksanns AT guineraquelpf extractionofphenoliccompoundswithantioxidantactivityfromstrawberriesmodellingwithartificialneuralnetworksanns |