Cargando…

Prediction in the Dynamics and Spoilage of Shewanella putrefaciens in Bigeye Tuna (Thunnus obesus) by Gas Sensors Stored at Different Refrigeration Temperatures

Shewanella putrefaciens have a faster growth rate and strong spoilage potential at low temperatures for aquatic products. This study developed a nondestructive method for predicting the kinetic growth and spoilage of S. putrefaciens in bigeye tuna during cold storage at 4, 7 and 10 °C by electronic...

Descripción completa

Detalles Bibliográficos
Autores principales: Yi, Zhengkai, Xie, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8472656/
https://www.ncbi.nlm.nih.gov/pubmed/34574241
http://dx.doi.org/10.3390/foods10092132
_version_ 1784574789176786944
author Yi, Zhengkai
Xie, Jing
author_facet Yi, Zhengkai
Xie, Jing
author_sort Yi, Zhengkai
collection PubMed
description Shewanella putrefaciens have a faster growth rate and strong spoilage potential at low temperatures for aquatic products. This study developed a nondestructive method for predicting the kinetic growth and spoilage of S. putrefaciens in bigeye tuna during cold storage at 4, 7 and 10 °C by electronic nose. According to the responses of electronic nose sensor P30/2, the fitted primary kinetic models (Gompertz and logistic models) and secondary model (square root function model) were able to better simulate the dynamic growth of S. putrefaciens, with high R(2) and low RMSE values in the range of 0.96–0.99 and 0.021–0.061, respectively. A partial least squares (PLS) regression model based on both electronic nose sensor response values and electrical conductivity (EC) values predicted spoilage of S. putrefaciens in bigeye tuna more accurately than the PLS model based on sensor signal values only. In addition, SPME/GC-MS analysis suggested that 1-octen-3-ol, 2-nonanone, 2-heptanone, dimethyl disulfide and methylamine, N, N-dimethyl- are the key VOCs of tuna inoculated with S. putrefaciens.
format Online
Article
Text
id pubmed-8472656
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-84726562021-09-28 Prediction in the Dynamics and Spoilage of Shewanella putrefaciens in Bigeye Tuna (Thunnus obesus) by Gas Sensors Stored at Different Refrigeration Temperatures Yi, Zhengkai Xie, Jing Foods Article Shewanella putrefaciens have a faster growth rate and strong spoilage potential at low temperatures for aquatic products. This study developed a nondestructive method for predicting the kinetic growth and spoilage of S. putrefaciens in bigeye tuna during cold storage at 4, 7 and 10 °C by electronic nose. According to the responses of electronic nose sensor P30/2, the fitted primary kinetic models (Gompertz and logistic models) and secondary model (square root function model) were able to better simulate the dynamic growth of S. putrefaciens, with high R(2) and low RMSE values in the range of 0.96–0.99 and 0.021–0.061, respectively. A partial least squares (PLS) regression model based on both electronic nose sensor response values and electrical conductivity (EC) values predicted spoilage of S. putrefaciens in bigeye tuna more accurately than the PLS model based on sensor signal values only. In addition, SPME/GC-MS analysis suggested that 1-octen-3-ol, 2-nonanone, 2-heptanone, dimethyl disulfide and methylamine, N, N-dimethyl- are the key VOCs of tuna inoculated with S. putrefaciens. MDPI 2021-09-09 /pmc/articles/PMC8472656/ /pubmed/34574241 http://dx.doi.org/10.3390/foods10092132 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Yi, Zhengkai
Xie, Jing
Prediction in the Dynamics and Spoilage of Shewanella putrefaciens in Bigeye Tuna (Thunnus obesus) by Gas Sensors Stored at Different Refrigeration Temperatures
title Prediction in the Dynamics and Spoilage of Shewanella putrefaciens in Bigeye Tuna (Thunnus obesus) by Gas Sensors Stored at Different Refrigeration Temperatures
title_full Prediction in the Dynamics and Spoilage of Shewanella putrefaciens in Bigeye Tuna (Thunnus obesus) by Gas Sensors Stored at Different Refrigeration Temperatures
title_fullStr Prediction in the Dynamics and Spoilage of Shewanella putrefaciens in Bigeye Tuna (Thunnus obesus) by Gas Sensors Stored at Different Refrigeration Temperatures
title_full_unstemmed Prediction in the Dynamics and Spoilage of Shewanella putrefaciens in Bigeye Tuna (Thunnus obesus) by Gas Sensors Stored at Different Refrigeration Temperatures
title_short Prediction in the Dynamics and Spoilage of Shewanella putrefaciens in Bigeye Tuna (Thunnus obesus) by Gas Sensors Stored at Different Refrigeration Temperatures
title_sort prediction in the dynamics and spoilage of shewanella putrefaciens in bigeye tuna (thunnus obesus) by gas sensors stored at different refrigeration temperatures
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8472656/
https://www.ncbi.nlm.nih.gov/pubmed/34574241
http://dx.doi.org/10.3390/foods10092132
work_keys_str_mv AT yizhengkai predictioninthedynamicsandspoilageofshewanellaputrefaciensinbigeyetunathunnusobesusbygassensorsstoredatdifferentrefrigerationtemperatures
AT xiejing predictioninthedynamicsandspoilageofshewanellaputrefaciensinbigeyetunathunnusobesusbygassensorsstoredatdifferentrefrigerationtemperatures