Cargando…

Positioning Performance of a Sub-Arc-Second Micro-Drive Rotary System

In the macro/micro dual-drive rotary system, the micro-drive system compensates for the position error of the macro-drive system. To realize the sub-arc-second (i.e., level of 1″–0.1″) positioning of the macro/micro dual-drive rotary system, it is necessary to study the positioning performance of th...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Manzhi, Lv, Zhenyang, Zhang, Chuanwei, Yang, Yizhi, Jing, Gang, Guo, Wei, Lu, Zhengxiong, Huang, Yumei, Wei, Kaiyang, Li, Linyue, Feng, Bin, Ge, Hongyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8472757/
https://www.ncbi.nlm.nih.gov/pubmed/34577706
http://dx.doi.org/10.3390/mi12091063
Descripción
Sumario:In the macro/micro dual-drive rotary system, the micro-drive system compensates for the position error of the macro-drive system. To realize the sub-arc-second (i.e., level of 1″–0.1″) positioning of the macro/micro dual-drive rotary system, it is necessary to study the positioning performance of the sub-arc-second micro-drive rotary system. In this paper, we designed a sub-arc-second micro-drive rotary system consisting of a PZT (piezoelectric actuator) and a micro rotary mechanism, and used simulation and experimental methods to study the positioning performance of the system. First, the micro-drive rotary system was developed to provide ultra-precise rotary motion. In this system, the PZT has ultrahigh resolution at a level of 0.1 nanometers in linear motion; a micro rotating mechanism was designed according to the composite motion principle of the flexible hinge, which could transform the linear motion of piezoelectric ceramics into rotating motion accurately. Second, the drive performance was analyzed based on the drive performance experiment. Third, kinematics, simulation, and experiments were carried out to analyze the transformation performance of the system. Finally, the positioning performance equation of the system was established based on the two performance equations, and the maximum rotary displacements and positioning error of the system were calculated. The study results showed that the system can provide precision motion at the sub-arc-second and good linearity of motion. This study has a certain reference value in ultra-precision positioning and micromachining for research on rotary motion systems at the sub-arc-second level.