Cargando…
Data-Driven Object Pose Estimation in a Practical Bin-Picking Application
This paper addresses the problem of pose estimation from 2D images for textureless industrial metallic parts for a semistructured bin-picking task. The appearance of metallic reflective parts is highly dependent on the camera viewing direction, as well as the distribution of light on the object, mak...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473210/ https://www.ncbi.nlm.nih.gov/pubmed/34577303 http://dx.doi.org/10.3390/s21186093 |
Sumario: | This paper addresses the problem of pose estimation from 2D images for textureless industrial metallic parts for a semistructured bin-picking task. The appearance of metallic reflective parts is highly dependent on the camera viewing direction, as well as the distribution of light on the object, making conventional vision-based methods unsuitable for the task. We propose a solution using direct light at a fixed position to the camera, mounted directly on the robot’s gripper, that allows us to take advantage of the reflective properties of the manipulated object. We propose a data-driven approach based on convolutional neural networks (CNN), without the need for a hard-coded geometry of the manipulated object. The solution was modified for an industrial application and extensively tested in a real factory. Our solution uses a cheap 2D camera and allows for a semi-automatic data-gathering process on-site. |
---|