Cargando…

Data-Driven Object Pose Estimation in a Practical Bin-Picking Application

This paper addresses the problem of pose estimation from 2D images for textureless industrial metallic parts for a semistructured bin-picking task. The appearance of metallic reflective parts is highly dependent on the camera viewing direction, as well as the distribution of light on the object, mak...

Descripción completa

Detalles Bibliográficos
Autores principales: Kozák, Viktor, Sushkov, Roman, Kulich, Miroslav, Přeučil, Libor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473210/
https://www.ncbi.nlm.nih.gov/pubmed/34577303
http://dx.doi.org/10.3390/s21186093
Descripción
Sumario:This paper addresses the problem of pose estimation from 2D images for textureless industrial metallic parts for a semistructured bin-picking task. The appearance of metallic reflective parts is highly dependent on the camera viewing direction, as well as the distribution of light on the object, making conventional vision-based methods unsuitable for the task. We propose a solution using direct light at a fixed position to the camera, mounted directly on the robot’s gripper, that allows us to take advantage of the reflective properties of the manipulated object. We propose a data-driven approach based on convolutional neural networks (CNN), without the need for a hard-coded geometry of the manipulated object. The solution was modified for an industrial application and extensively tested in a real factory. Our solution uses a cheap 2D camera and allows for a semi-automatic data-gathering process on-site.