Cargando…

Plasmacytoid Dendritic Cells Mediate Myocardial Ischemia/Reperfusion Injury by Secreting Type I Interferons

BACKGROUND: We previously demonstrated that ischemically injured cardiomyocytes release cell‐free DNA and HMGB1 (high mobility group box 1 protein) into circulation during reperfusion, activating proinflammatory responses and ultimately exacerbating reperfusion injury. We hypothesize that cell‐free...

Descripción completa

Detalles Bibliográficos
Autores principales: Lai, Lina, Zhang, Aimee, Yang, Boris, Charles, Eric J., Kron, Irving L., Yang, Zequan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8475660/
https://www.ncbi.nlm.nih.gov/pubmed/34325534
http://dx.doi.org/10.1161/JAHA.121.020754
Descripción
Sumario:BACKGROUND: We previously demonstrated that ischemically injured cardiomyocytes release cell‐free DNA and HMGB1 (high mobility group box 1 protein) into circulation during reperfusion, activating proinflammatory responses and ultimately exacerbating reperfusion injury. We hypothesize that cell‐free DNA and HMGB1 mediate myocardial ischemia‐reperfusion injury by stimulating plasmacytoid dendritic cells (pDCs) to secrete type I interferon (IFN‐I). METHODS AND RESULTS: C57BL/6 and interferon alpha receptor‐1 knockout mice underwent 40 minutes of left coronary artery occlusion followed by 60 minutes of reperfusion (40′/60′ IR) before infarct size was evaluated by 2,3,5‐Triphenyltetrazolium chloride–Blue staining. Cardiac perfusate was acquired in ischemic hearts without reperfusion by antegrade perfusion of the isolated heart. Flow cytometry in pDC‐depleted mice treated with multiple doses of plasmacytoid dendritic cell antigen‐1 antibody via intraperitoneal injection demonstrated plasmacytoid dendritic cell antigen‐1 antibody treatment had no effect on conventional splenic dendritic cells but significantly reduced splenic pDCs by 60%. pDC‐depleted mice had significantly smaller infarct size and decreased plasma interferon‐α and interferon‐β compared with control. Blockade of the type I interferon signaling pathway with cyclic GMP‐AMP synthase inhibitor, stimulator of interferon genes antibody, or interferon regulatory factor 3 antibody upon reperfusion similarly significantly attenuated infarct size by 45%. Plasma levels of interferon‐α and interferon‐β were significantly reduced in cyclic GMP‐AMP synthase inhibitor‐treated mice. Infarct size was significantly reduced by >30% in type I interferon receptor monoclonal antibody–treated mice and interferon alpha receptor‐1 knockout mice. In splenocyte culture, 40′/0′ cardiac perfusate treatment stimulated interferon‐α and interferon‐β production; however, this effect disappeared in the presence of cyclic GMP‐AMP synthase inhibitor. CONCLUSIONS: Type I interferon production is stimulated following myocardial ischemia by cardiogenic cell‐free DNA/HMGB1 in a pDC‐dependent manner, and subsequently activates type I interferon receptors to exacerbate reperfusion injury. These results identify new potential therapeutic targets to attenuate myocardial ischemia‐reperfusion injury.