Cargando…
HiCRep.py: fast comparison of Hi-C contact matrices in Python
MOTIVATION: Hi-C is the most widely used assay for investigating genome-wide 3D organization of chromatin. When working with Hi-C data, it is often useful to calculate the similarity between contact matrices in order to assess experimental reproducibility or to quantify relationships among Hi-C data...
Autores principales: | Lin, Dejun, Sanders, Justin, Noble, William Stafford |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479650/ https://www.ncbi.nlm.nih.gov/pubmed/33576390 http://dx.doi.org/10.1093/bioinformatics/btab097 |
Ejemplares similares
-
HiCRep: assessing the reproducibility of Hi-C data using a stratum-adjusted correlation coefficient
por: Yang, Tao, et al.
Publicado: (2017) -
HiC-spector: a matrix library for spectral and reproducibility analysis of Hi-C contact maps
por: Yan, Koon-Kiu, et al.
Publicado: (2017) -
Hi-Corrector: a fast, scalable and memory-efficient package for normalizing large-scale Hi-C data
por: Li, Wenyuan, et al.
Publicado: (2015) -
HiCBricks: building blocks for efficient handling of large Hi-C datasets
por: Pal, Koustav, et al.
Publicado: (2020) -
PecanPy: a fast, efficient and parallelized Python implementation of node2vec
por: Liu, Renming, et al.
Publicado: (2021)