Cargando…
ECNet is an evolutionary context-integrated deep learning framework for protein engineering
Machine learning has been increasingly used for protein engineering. However, because the general sequence contexts they capture are not specific to the protein being engineered, the accuracy of existing machine learning algorithms is rather limited. Here, we report ECNet (evolutionary context-integ...
Autores principales: | Luo, Yunan, Jiang, Guangde, Yu, Tianhao, Liu, Yang, Vo, Lam, Ding, Hantian, Su, Yufeng, Qian, Wesley Wei, Zhao, Huimin, Peng, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8484459/ https://www.ncbi.nlm.nih.gov/pubmed/34593817 http://dx.doi.org/10.1038/s41467-021-25976-8 |
Ejemplares similares
-
ECNet: Efficient Convolutional Networks for Side Scan Sonar Image Segmentation
por: Wu, Meihan, et al.
Publicado: (2019) -
Integrating thermodynamic and sequence contexts improves protein-RNA binding prediction
por: Su, Yufeng, et al.
Publicado: (2019) -
Rational engineering of Streptomyces albus J1074 for the overexpression of secondary metabolite gene clusters
por: Kallifidas, Dimitris, et al.
Publicado: (2018) -
A deep learning framework integrating MRI image preprocessing methods for brain tumor segmentation and classification
por: Dang, Khiet, et al.
Publicado: (2022) -
Depression in an evolutionary context
por: Wolpert, Lewis
Publicado: (2008)