Cargando…
An improved data-free surrogate model for solving partial differential equations using deep neural networks
Partial differential equations (PDEs) are ubiquitous in natural science and engineering problems. Traditional discrete methods for solving PDEs are usually time-consuming and labor-intensive due to the need for tedious mesh generation and numerical iterations. Recently, deep neural networks have sho...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8484684/ https://www.ncbi.nlm.nih.gov/pubmed/34593943 http://dx.doi.org/10.1038/s41598-021-99037-x |