Cargando…
An improved data-free surrogate model for solving partial differential equations using deep neural networks
Partial differential equations (PDEs) are ubiquitous in natural science and engineering problems. Traditional discrete methods for solving PDEs are usually time-consuming and labor-intensive due to the need for tedious mesh generation and numerical iterations. Recently, deep neural networks have sho...
Autores principales: | Chen, Xinhai, Chen, Rongliang, Wan, Qian, Xu, Rui, Liu, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8484684/ https://www.ncbi.nlm.nih.gov/pubmed/34593943 http://dx.doi.org/10.1038/s41598-021-99037-x |
Ejemplares similares
-
Wavelet methods for solving partial differential equations and fractional differential equations
por: Ray, Santanu Saha, et al.
Publicado: (2018) -
Transform methods for solving partial differential equations
por: Duffy, Dean G
Publicado: (2004) -
Deep Learning Approaches to Surrogates for Solving the Diffusion Equation for Mechanistic Real-World Simulations
por: Toledo-Marín, J. Quetzalcóatl, et al.
Publicado: (2021) -
Finite difference methods for solving partial differential equations
por: Van der Houwen, P J
Publicado: (1968) -
Solving Nonlinear Partial Differential Equations with Maple and Mathematica
por: Shingareva, Inna K, et al.
Publicado: (2011)