Cargando…
Controlling for background genetic effects using polygenic scores improves the power of genome-wide association studies
Ongoing increases in the size of human genotype and phenotype collections offer the promise of improved understanding of the genetics of complex diseases. In addition to the biological insights that can be gained from the nature of the variants that contribute to the genetic component of complex tra...
Autores principales: | Bennett, Declan, O’Shea, Donal, Ferguson, John, Morris, Derek, Seoighe, Cathal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8486788/ https://www.ncbi.nlm.nih.gov/pubmed/34599249 http://dx.doi.org/10.1038/s41598-021-99031-3 |
Ejemplares similares
-
Random-effects meta-analysis of effect sizes as a unified framework for gene set analysis
por: Makrooni, Mohammad A., et al.
Publicado: (2022) -
Inference of Candidate Germline Mutator Loci in Humans from Genome-Wide Haplotype Data
por: Seoighe, Cathal, et al.
Publicado: (2017) -
Phenome-wide analysis of genome-wide polygenic scores
por: Krapohl, E, et al.
Publicado: (2016) -
Polygenic power calculator: Statistical power and polygenic prediction accuracy of genome-wide association studies of complex traits
por: Wu, Tian, et al.
Publicado: (2022) -
Regulatory Landscape Enrichment Analysis (RLEA) using gaiaAssociation
por: Sosa, Eric A., et al.
Publicado: (2023)