Cargando…
CoMM-S(4): A Collaborative Mixed Model Using Summary-Level eQTL and GWAS Datasets in Transcriptome-Wide Association Studies
Motivation: Genome-wide association studies (GWAS) have achieved remarkable success in identifying SNP-trait associations in the last decade. However, it is challenging to identify the mechanisms that connect the genetic variants with complex traits as the majority of GWAS associations are in non-co...
Autores principales: | Yang, Yi, Yeung, Kar-Fu, Liu, Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8488198/ https://www.ncbi.nlm.nih.gov/pubmed/34616426 http://dx.doi.org/10.3389/fgene.2021.704538 |
Ejemplares similares
-
CoMM: A Collaborative Mixed Model That Integrates GWAS and eQTL Data Sets to Investigate the Genetic Architecture of Complex Traits
por: Yeung, Kar-Fu, et al.
Publicado: (2019) -
Prioritization of nasal polyp-associated genes by integrating GWAS and eQTL summary data
por: Yoshikawa, Masahiro, et al.
Publicado: (2023) -
Integrate GWAS, eQTL, and mQTL Data to Identify Alzheimer’s Disease-Related Genes
por: Zhao, Tianyi, et al.
Publicado: (2019) -
Integrative analysis of eQTL and GWAS summary statistics reveals transcriptomic alteration in Alzheimer brains
por: Varathan, Pradeep, et al.
Publicado: (2022) -
Integration of GWAS and eQTL Analysis to Identify Risk Loci and Susceptibility Genes for Gastric Cancer
por: Ni, Jing, et al.
Publicado: (2020)