Cargando…

Meat intake and risk of mortality and graft failure in kidney transplant recipients

BACKGROUND: It is unknown whether meat intake is beneficial for long-term patient and graft survival in kidney transplant recipients (KTR). OBJECTIVES: We first investigated the association of the previously described meat intake biomarkers 1-methylhistidine and 3-methylhistidine with intake of whit...

Descripción completa

Detalles Bibliográficos
Autores principales: Said, M Yusof, Rodriguez-Niño, Angelica, Post, Adrian, Schutten, Joelle C, Kieneker, Lyanne M, Gomes-Neto, Antonio W, van Londen, Marco, Osté, Maryse Cj, Borgonjen-van den Berg, Karin J, Nolte, Ilja M, van den Berg, Else, de Blaauw, Pim, van der Krogt, Jennifer, Heiner-Fokkema, M Rebecca, Navis, Gerjan, Yard, Benito A, Bakker, Stephan Jl
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8488867/
https://www.ncbi.nlm.nih.gov/pubmed/34091671
http://dx.doi.org/10.1093/ajcn/nqab185
Descripción
Sumario:BACKGROUND: It is unknown whether meat intake is beneficial for long-term patient and graft survival in kidney transplant recipients (KTR). OBJECTIVES: We first investigated the association of the previously described meat intake biomarkers 1-methylhistidine and 3-methylhistidine with intake of white and red meat as estimated from a validated food frequency questionnaire (FFQ). Second, we investigated the association of the meat intake biomarkers with long-term outcomes in KTR. METHODS: We measured 24-h urinary excretion of 1-methylhistidine and 3-methylhistidine by validated assays in a cohort of 678 clinically stable KTR. Cross-sectional associations were assessed by linear regression. We used Cox regression analyses to prospectively study associations of log(2)-transformed biomarkers with mortality and graft failure. RESULTS: Urinary 1-methylhistidine and 3-methylhistidine excretion values were median: 282; interquartile range (IQR): 132–598 µmol/24 h and median: 231; IQR: 175–306 µmol/24 h, respectively. Urinary 1-methylhistidine was associated with white meat intake [standardized β (st β): 0.20; 95% CI: 0.12, 0.28; P < 0.001], whereas urinary 3-methylhistidine was associated with red meat intake (st β: 0.30; 95% CI: 0.23, 0.38; P < 0.001). During median follow-up for 5.4 (IQR: 4.9–6.1) y, 145 (21%) died and 83 (12%) developed graft failure. Urinary 3-methylhistidine was inversely associated with mortality independently of potential confounders (HR per doubling: 0.55; 95% CI: 0.42, 0.72; P < 0.001). Both urinary 1-methylhistidine and urinary 3-methylhistidine were inversely associated with graft failure independent of potential confounders (HR per doubling: 0.84; 95% CI: 0.73, 0.96; P = 0.01; and 0.59; 95% CI: 0.41, 0.85; P = 0.004, respectively). CONCLUSIONS: High urinary 3-methylhistidine, reflecting higher red meat intake, is independently associated with lower risk of mortality. High urinary concentrations of both 1- and 3-methylhistidine, of which the former reflects higher white meat intake, are independently associated with lower risk of graft failure in KTR. Future intervention studies are warranted to study the effect of high meat intake on mortality and graft failure in KTR, using these biomarkers.