Cargando…
Likelihood-based deconvolution of bulk gene expression data using single-cell references
Direct comparison of bulk gene expression profiles is complicated by distinct cell type mixtures in each sample that obscure whether observed differences are actually caused by changes in the expression levels themselves or are simply a result of differing cell type compositions. Single-cell technol...
Autores principales: | Erdmann-Pham, Dan D., Fischer, Jonathan, Hong, Justin, Song, Yun S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494215/ https://www.ncbi.nlm.nih.gov/pubmed/34301624 http://dx.doi.org/10.1101/gr.272344.120 |
Ejemplares similares
-
BEDwARS: a robust Bayesian approach to bulk gene expression deconvolution with noisy reference signatures
por: Ghaffari, Saba, et al.
Publicado: (2023) -
THUNDER: A reference-free deconvolution method to infer cell type proportions from bulk Hi-C data
por: Rowland, Bryce, et al.
Publicado: (2022) -
Computational deconvolution to estimate cell type-specific gene expression from bulk data
por: Jaakkola, Maria K, et al.
Publicado: (2021) -
EPISCORE: cell type deconvolution of bulk tissue DNA methylomes from single-cell RNA-Seq data
por: Teschendorff, Andrew E., et al.
Publicado: (2020) -
SCDC: bulk gene expression deconvolution by multiple single-cell RNA sequencing references
por: Dong, Meichen, et al.
Publicado: (2020)