Cargando…

The role of nuclear organization in trans-splicing based expression of heat shock protein 90 in Giardia lamblia

Hsp90 gene of G. lamblia has a split nature comprising two ORFs separated by 777 kb on chromosome 5. The ORFs of the split gene on chromosome 5 undergo transcription to generate independent pre-mRNAs that join by a unique trans-splicing reaction that remains partially understood. The canonical cis-a...

Descripción completa

Detalles Bibliográficos
Autores principales: Iyer, Vinithra, Tushir, Sheetal, Verma, Shreekant, Majumdar, Sudeshna, Gayen, Srimonta, Mishra, Rakesh, Tatu, Utpal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494341/
https://www.ncbi.nlm.nih.gov/pubmed/34559805
http://dx.doi.org/10.1371/journal.pntd.0009810
Descripción
Sumario:Hsp90 gene of G. lamblia has a split nature comprising two ORFs separated by 777 kb on chromosome 5. The ORFs of the split gene on chromosome 5 undergo transcription to generate independent pre-mRNAs that join by a unique trans-splicing reaction that remains partially understood. The canonical cis-acting nucleotide elements such as 5’SS-GU, 3’SS-AG, polypyrimidine tract and branch point adenine are present in the independent pre-mRNAs and therefore trans-splicing of Hsp90 must be assisted by spliceosomes in vivo. Using an approach of RNA-protein pull down, we show that an RNA helicase selectively interacts with HspN pre-mRNA. Our experiments involving high resolution chromosome conformation capture technology as well as DNA FISH show that the trans-spliced genes of Giardia are in three-dimensional spatial proximity in the nucleus. Altogether our study provides a glimpse into the in vivo mechanisms involving protein factors as well as chromatin structure to facilitate the unique inter-molecular post-transcriptional stitching of split genes in G. lamblia.