Cargando…

The Type 2 Diabetes Factor Methylglyoxal Mediates Axon Initial Segment Shortening and Alters Neuronal Function at the Cellular and Network Levels

Recent evidence suggests that alteration of axon initial segment (AIS) geometry (i.e., length or location along the axon) contributes to CNS dysfunction in neurological diseases. For example, AIS length is shorter in the prefrontal cortex of type 2 diabetic mice with cognitive impairment. To determi...

Descripción completa

Detalles Bibliográficos
Autores principales: Griggs, Ryan B., Nguyen, Duc V. M., Yermakov, Leonid M., Jaber, Jeneane M., Shelby, Jennae N., Steinbrunner, Josef K., Miller, John A., Gonzalez-Islas, Carlos, Wenner, Peter, Susuki, Keiichiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society for Neuroscience 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496204/
https://www.ncbi.nlm.nih.gov/pubmed/34531281
http://dx.doi.org/10.1523/ENEURO.0201-21.2021
_version_ 1784579705319456768
author Griggs, Ryan B.
Nguyen, Duc V. M.
Yermakov, Leonid M.
Jaber, Jeneane M.
Shelby, Jennae N.
Steinbrunner, Josef K.
Miller, John A.
Gonzalez-Islas, Carlos
Wenner, Peter
Susuki, Keiichiro
author_facet Griggs, Ryan B.
Nguyen, Duc V. M.
Yermakov, Leonid M.
Jaber, Jeneane M.
Shelby, Jennae N.
Steinbrunner, Josef K.
Miller, John A.
Gonzalez-Islas, Carlos
Wenner, Peter
Susuki, Keiichiro
author_sort Griggs, Ryan B.
collection PubMed
description Recent evidence suggests that alteration of axon initial segment (AIS) geometry (i.e., length or location along the axon) contributes to CNS dysfunction in neurological diseases. For example, AIS length is shorter in the prefrontal cortex of type 2 diabetic mice with cognitive impairment. To determine the key type 2 diabetes-related factor that produces AIS shortening we modified levels of insulin, glucose, or the reactive glucose metabolite methylglyoxal in cultures of dissociated cortices from male and female mice and quantified AIS geometry using immunofluorescent imaging of the AIS proteins AnkyrinG and βIV spectrin. Neither insulin nor glucose modification altered AIS length. Exposure to 100 but not 1 or 10 μm methylglyoxal for 24 h resulted in accumulation of the methylglyoxal-derived advanced glycation end-product hydroimidazolone and produced reversible AIS shortening without cell death. Methylglyoxal-evoked AIS shortening occurred in both excitatory and putative inhibitory neuron populations and in the presence of tetrodotoxin (TTX). In single-cell recordings resting membrane potential was depolarized at 0.5–3 h and returned to normal at 24 h. In multielectrode array (MEA) recordings methylglyoxal produced an immediate ∼300% increase in spiking and bursting rates that returned to normal within 2 min, followed by a ∼20% reduction of network activity at 0.5–3 h and restoration of activity to baseline levels at 24 h. AIS length was unchanged at 0.5–3 h despite the presence of depolarization and network activity reduction. Nevertheless, these results suggest that methylglyoxal could be a key mediator of AIS shortening and disruptor of neuronal function during type 2 diabetes.
format Online
Article
Text
id pubmed-8496204
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Society for Neuroscience
record_format MEDLINE/PubMed
spelling pubmed-84962042021-10-08 The Type 2 Diabetes Factor Methylglyoxal Mediates Axon Initial Segment Shortening and Alters Neuronal Function at the Cellular and Network Levels Griggs, Ryan B. Nguyen, Duc V. M. Yermakov, Leonid M. Jaber, Jeneane M. Shelby, Jennae N. Steinbrunner, Josef K. Miller, John A. Gonzalez-Islas, Carlos Wenner, Peter Susuki, Keiichiro eNeuro Research Article: New Research Recent evidence suggests that alteration of axon initial segment (AIS) geometry (i.e., length or location along the axon) contributes to CNS dysfunction in neurological diseases. For example, AIS length is shorter in the prefrontal cortex of type 2 diabetic mice with cognitive impairment. To determine the key type 2 diabetes-related factor that produces AIS shortening we modified levels of insulin, glucose, or the reactive glucose metabolite methylglyoxal in cultures of dissociated cortices from male and female mice and quantified AIS geometry using immunofluorescent imaging of the AIS proteins AnkyrinG and βIV spectrin. Neither insulin nor glucose modification altered AIS length. Exposure to 100 but not 1 or 10 μm methylglyoxal for 24 h resulted in accumulation of the methylglyoxal-derived advanced glycation end-product hydroimidazolone and produced reversible AIS shortening without cell death. Methylglyoxal-evoked AIS shortening occurred in both excitatory and putative inhibitory neuron populations and in the presence of tetrodotoxin (TTX). In single-cell recordings resting membrane potential was depolarized at 0.5–3 h and returned to normal at 24 h. In multielectrode array (MEA) recordings methylglyoxal produced an immediate ∼300% increase in spiking and bursting rates that returned to normal within 2 min, followed by a ∼20% reduction of network activity at 0.5–3 h and restoration of activity to baseline levels at 24 h. AIS length was unchanged at 0.5–3 h despite the presence of depolarization and network activity reduction. Nevertheless, these results suggest that methylglyoxal could be a key mediator of AIS shortening and disruptor of neuronal function during type 2 diabetes. Society for Neuroscience 2021-10-06 /pmc/articles/PMC8496204/ /pubmed/34531281 http://dx.doi.org/10.1523/ENEURO.0201-21.2021 Text en Copyright © 2021 Griggs et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.
spellingShingle Research Article: New Research
Griggs, Ryan B.
Nguyen, Duc V. M.
Yermakov, Leonid M.
Jaber, Jeneane M.
Shelby, Jennae N.
Steinbrunner, Josef K.
Miller, John A.
Gonzalez-Islas, Carlos
Wenner, Peter
Susuki, Keiichiro
The Type 2 Diabetes Factor Methylglyoxal Mediates Axon Initial Segment Shortening and Alters Neuronal Function at the Cellular and Network Levels
title The Type 2 Diabetes Factor Methylglyoxal Mediates Axon Initial Segment Shortening and Alters Neuronal Function at the Cellular and Network Levels
title_full The Type 2 Diabetes Factor Methylglyoxal Mediates Axon Initial Segment Shortening and Alters Neuronal Function at the Cellular and Network Levels
title_fullStr The Type 2 Diabetes Factor Methylglyoxal Mediates Axon Initial Segment Shortening and Alters Neuronal Function at the Cellular and Network Levels
title_full_unstemmed The Type 2 Diabetes Factor Methylglyoxal Mediates Axon Initial Segment Shortening and Alters Neuronal Function at the Cellular and Network Levels
title_short The Type 2 Diabetes Factor Methylglyoxal Mediates Axon Initial Segment Shortening and Alters Neuronal Function at the Cellular and Network Levels
title_sort type 2 diabetes factor methylglyoxal mediates axon initial segment shortening and alters neuronal function at the cellular and network levels
topic Research Article: New Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496204/
https://www.ncbi.nlm.nih.gov/pubmed/34531281
http://dx.doi.org/10.1523/ENEURO.0201-21.2021
work_keys_str_mv AT griggsryanb thetype2diabetesfactormethylglyoxalmediatesaxoninitialsegmentshorteningandaltersneuronalfunctionatthecellularandnetworklevels
AT nguyenducvm thetype2diabetesfactormethylglyoxalmediatesaxoninitialsegmentshorteningandaltersneuronalfunctionatthecellularandnetworklevels
AT yermakovleonidm thetype2diabetesfactormethylglyoxalmediatesaxoninitialsegmentshorteningandaltersneuronalfunctionatthecellularandnetworklevels
AT jaberjeneanem thetype2diabetesfactormethylglyoxalmediatesaxoninitialsegmentshorteningandaltersneuronalfunctionatthecellularandnetworklevels
AT shelbyjennaen thetype2diabetesfactormethylglyoxalmediatesaxoninitialsegmentshorteningandaltersneuronalfunctionatthecellularandnetworklevels
AT steinbrunnerjosefk thetype2diabetesfactormethylglyoxalmediatesaxoninitialsegmentshorteningandaltersneuronalfunctionatthecellularandnetworklevels
AT millerjohna thetype2diabetesfactormethylglyoxalmediatesaxoninitialsegmentshorteningandaltersneuronalfunctionatthecellularandnetworklevels
AT gonzalezislascarlos thetype2diabetesfactormethylglyoxalmediatesaxoninitialsegmentshorteningandaltersneuronalfunctionatthecellularandnetworklevels
AT wennerpeter thetype2diabetesfactormethylglyoxalmediatesaxoninitialsegmentshorteningandaltersneuronalfunctionatthecellularandnetworklevels
AT susukikeiichiro thetype2diabetesfactormethylglyoxalmediatesaxoninitialsegmentshorteningandaltersneuronalfunctionatthecellularandnetworklevels
AT griggsryanb type2diabetesfactormethylglyoxalmediatesaxoninitialsegmentshorteningandaltersneuronalfunctionatthecellularandnetworklevels
AT nguyenducvm type2diabetesfactormethylglyoxalmediatesaxoninitialsegmentshorteningandaltersneuronalfunctionatthecellularandnetworklevels
AT yermakovleonidm type2diabetesfactormethylglyoxalmediatesaxoninitialsegmentshorteningandaltersneuronalfunctionatthecellularandnetworklevels
AT jaberjeneanem type2diabetesfactormethylglyoxalmediatesaxoninitialsegmentshorteningandaltersneuronalfunctionatthecellularandnetworklevels
AT shelbyjennaen type2diabetesfactormethylglyoxalmediatesaxoninitialsegmentshorteningandaltersneuronalfunctionatthecellularandnetworklevels
AT steinbrunnerjosefk type2diabetesfactormethylglyoxalmediatesaxoninitialsegmentshorteningandaltersneuronalfunctionatthecellularandnetworklevels
AT millerjohna type2diabetesfactormethylglyoxalmediatesaxoninitialsegmentshorteningandaltersneuronalfunctionatthecellularandnetworklevels
AT gonzalezislascarlos type2diabetesfactormethylglyoxalmediatesaxoninitialsegmentshorteningandaltersneuronalfunctionatthecellularandnetworklevels
AT wennerpeter type2diabetesfactormethylglyoxalmediatesaxoninitialsegmentshorteningandaltersneuronalfunctionatthecellularandnetworklevels
AT susukikeiichiro type2diabetesfactormethylglyoxalmediatesaxoninitialsegmentshorteningandaltersneuronalfunctionatthecellularandnetworklevels