Cargando…
An Unsupervised Deep Feature Learning Model Based on Parallel Convolutional Autoencoder for Intelligent Fault Diagnosis of Main Reducer
Traditional diagnostic framework consists of three parts: data acquisition, feature generation, and fault classification. However, manual feature extraction utilized signal processing technologies heavily depending on subjectivity and prior knowledge which affect the effectiveness and efficiency. To...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8497123/ https://www.ncbi.nlm.nih.gov/pubmed/34630558 http://dx.doi.org/10.1155/2021/8922656 |