Cargando…
An Unsupervised Deep Feature Learning Model Based on Parallel Convolutional Autoencoder for Intelligent Fault Diagnosis of Main Reducer
Traditional diagnostic framework consists of three parts: data acquisition, feature generation, and fault classification. However, manual feature extraction utilized signal processing technologies heavily depending on subjectivity and prior knowledge which affect the effectiveness and efficiency. To...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8497123/ https://www.ncbi.nlm.nih.gov/pubmed/34630558 http://dx.doi.org/10.1155/2021/8922656 |
Sumario: | Traditional diagnostic framework consists of three parts: data acquisition, feature generation, and fault classification. However, manual feature extraction utilized signal processing technologies heavily depending on subjectivity and prior knowledge which affect the effectiveness and efficiency. To tackle these problems, an unsupervised deep feature learning model based on parallel convolutional autoencoder (PCAE) is proposed and applied in the stage of feature generation of diagnostic framework. Firstly, raw vibration signals are normalized and segmented into sample set by sliding window. Secondly, deep features are, respectively, extracted from reshaped form of raw sample set and spectrogram in time-frequency domain by two parallel unsupervised feature learning branches based on convolutional autoencoder (CAE). During the training process, dropout regularization and batch normalization are utilized to prevent over fitting. Finally, extracted representative features are feed into the classification model based on deep structure of neural network (DNN) with softmax. The effectiveness of the proposed approach is evaluated in fault diagnosis of automobile main reducer. The results produced in contrastive analysis demonstrate that the diagnostic framework based on parallel unsupervised feature learning and deep structure of classification can effectively enhance the robustness and enhance the identification accuracy of operation conditions by nearly 8%. |
---|