Cargando…

An Unsupervised Deep Feature Learning Model Based on Parallel Convolutional Autoencoder for Intelligent Fault Diagnosis of Main Reducer

Traditional diagnostic framework consists of three parts: data acquisition, feature generation, and fault classification. However, manual feature extraction utilized signal processing technologies heavily depending on subjectivity and prior knowledge which affect the effectiveness and efficiency. To...

Descripción completa

Detalles Bibliográficos
Autores principales: Ye, Qing, Liu, Changhua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8497123/
https://www.ncbi.nlm.nih.gov/pubmed/34630558
http://dx.doi.org/10.1155/2021/8922656

Ejemplares similares