Cargando…
An Unsupervised Deep Feature Learning Model Based on Parallel Convolutional Autoencoder for Intelligent Fault Diagnosis of Main Reducer
Traditional diagnostic framework consists of three parts: data acquisition, feature generation, and fault classification. However, manual feature extraction utilized signal processing technologies heavily depending on subjectivity and prior knowledge which affect the effectiveness and efficiency. To...
Autores principales: | Ye, Qing, Liu, Changhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8497123/ https://www.ncbi.nlm.nih.gov/pubmed/34630558 http://dx.doi.org/10.1155/2021/8922656 |
Ejemplares similares
-
Deep Convolutional Neural Network with Deconvolution
and a Deep Autoencoder for Fault Detection and Diagnosis
por: Kanno, Yasuhiro, et al.
Publicado: (2022) -
An Intelligent Fault Diagnosis Based on Adversarial Generating Module and Semi-supervised Convolutional Neural Network
por: Ye, Qing, et al.
Publicado: (2022) -
Unsupervised feature learning for electrocardiogram data using the convolutional variational autoencoder
por: Jang, Jong-Hwan, et al.
Publicado: (2021) -
Unsupervised clustering of SARS-CoV-2 using deep convolutional autoencoder
por: Sherif, Fayroz F., et al.
Publicado: (2022) -
Autoencoder-Ensemble-Based Unsupervised Selection of Production-Relevant Variables for Context-Aware Fault Diagnosis
por: Kaupp, Lukas, et al.
Publicado: (2022)