Cargando…
Multi-omics driven predictions of response to acute phase combination antidepressant therapy: a machine learning approach with cross-trial replication
Combination antidepressant pharmacotherapies are frequently used to treat major depressive disorder (MDD). However, there is no evidence that machine learning approaches combining multi-omics measures (e.g., genomics and plasma metabolomics) can achieve clinically meaningful predictions of outcomes...
Autores principales: | Joyce, Jeremiah B., Grant, Caroline W., Liu, Duan, MahmoudianDehkordi, Siamak, Kaddurah-Daouk, Rima, Skime, Michelle, Biernacka, Joanna, Frye, Mark A., Mayes, Taryn, Carmody, Thomas, Croarkin, Paul E., Wang, Liewei, Weinshilboum, Richard, Bobo, William V., Trivedi, Madhukar H., Athreya, Arjun P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8497535/ https://www.ncbi.nlm.nih.gov/pubmed/34620827 http://dx.doi.org/10.1038/s41398-021-01632-z |
Ejemplares similares
-
Network science approach elucidates integrative genomic-metabolomic signature of antidepressant response and lifetime history of attempted suicide in adults with major depressive disorder
por: Grant, Caroline W., et al.
Publicado: (2022) -
Multi-Omics Characterization of Early- and Adult-Onset Major Depressive Disorder
por: Grant, Caroline W., et al.
Publicado: (2022) -
Prediction of short-term antidepressant response using probabilistic graphical models with replication across multiple drugs and treatment settings
por: Athreya, Arjun P., et al.
Publicado: (2021) -
Pharmacogenomics‐Driven Prediction of Antidepressant Treatment Outcomes: A Machine‐Learning Approach With Multi‐trial Replication
por: Athreya, Arjun P., et al.
Publicado: (2019) -
Evidence for machine learning guided early prediction of acute outcomes in the treatment of depressed children and adolescents with antidepressants
por: Athreya, Arjun P., et al.
Publicado: (2022)