Cargando…

Platelet‐derived growth factor (PDGF)‐BB protects dopaminergic neurons via activation of Akt/ERK/CREB pathways to upregulate tyrosine hydroxylase

AIMS: The neurotropic growth factor PDGF‐BB was shown to have vital neurorestorative functions in various animal models of Parkinson's disease (PD). Previous studies indicated that the regenerative property of PDGF‐BB contributes to the increased intensity of tyrosine hydroxylase (TH) fibers in...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Huan, Teng, Yan, Chen, Xingmin, Liu, Zhihao, Geng, Fan, Liu, Yanzhuo, Jiang, Haisong, Wang, Ziyan, Yang, Lu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8504523/
https://www.ncbi.nlm.nih.gov/pubmed/34346167
http://dx.doi.org/10.1111/cns.13708
Descripción
Sumario:AIMS: The neurotropic growth factor PDGF‐BB was shown to have vital neurorestorative functions in various animal models of Parkinson's disease (PD). Previous studies indicated that the regenerative property of PDGF‐BB contributes to the increased intensity of tyrosine hydroxylase (TH) fibers in vivo. However, whether PDGF‐BB directly modulates the expression of TH, and the underlying mechanism is still unknown. We will carefully examine this in our current study. METHOD: MPTP‐lesion mice received PDGF‐BB treatment via intracerebroventricular (i.c.v) administration, and the expression of TH in different brain regions was assessed by RT‐PCR, Western blot, and immunohistochemistry staining. The molecular mechanisms of PDGF‐BB‐mediated TH upregulation were examined by RT‐PCR, Western blot, ChIP assay, luciferase reporter assay, and immunocytochemistry. RESULTS: We validated a reversal expression of TH in MPTP‐lesion mice upon i.c.v administration of PDGF‐BB for seven days. Similar effects of PDGF‐BB‐mediated TH upregulation were also observed in MPP(+)‐treated primary neuronal culture and dopaminergic neuronal cell line SH‐SY5Y cells. We next demonstrated that PDGF‐BB rapidly activated the pro‐survival PI3K/Akt and MAPK/ERK signaling pathways, as well as the downstream CREB in SH‐SY5Y cells. We further confirmed the significant induction of p‐CREB in PDGF‐BB‐treated animals in vivo. Using a genetic approach, we demonstrated that the transcription factor CREB is critical for PDGF‐BB‐mediated TH expression. The activation and nucleus translocation of CREB were promoted in PDGF‐BB‐treated SH‐SY5Y cells, and the enrichment of CREB on the promoter region of TH gene was also increased upon PDGF‐BB treatment. CONCLUSION: Our data demonstrated that PDGF‐BB directly regulated the expression of TH via activating the downstream Akt/ERK/CREB signaling pathways. Our finding will further support the therapeutic potential of PDGF‐BB in PD, and provide the possibility that targeting PDGF signaling can be harnessed as an adjunctive therapy in PD in the future.