Cargando…

Differential MMP-14 Targeting by Lumican-Derived Peptides Unraveled by In Silico Approach

SIMPLE SUMMARY: This work aimed to investigate the interactions of lumican-derived peptides and MMP-14. An in silico approach unraveled key residues in the amino acid sequence of MMP-14 interacting with the Small Leucine-Rich Proteoglycan (SLRP) lumican-derived peptides. The in silico docking analys...

Descripción completa

Detalles Bibliográficos
Autores principales: Dauvé, Jonathan, Belloy, Nicolas, Rivet, Romain, Etique, Nicolas, Nizet, Pierre, Pietraszek-Gremplewicz, Katarzyna, Karamanou, Konstantina, Dauchez, Manuel, Ramont, Laurent, Brézillon, Stéphane, Baud, Stéphanie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8507859/
https://www.ncbi.nlm.nih.gov/pubmed/34638415
http://dx.doi.org/10.3390/cancers13194930
_version_ 1784581959428603904
author Dauvé, Jonathan
Belloy, Nicolas
Rivet, Romain
Etique, Nicolas
Nizet, Pierre
Pietraszek-Gremplewicz, Katarzyna
Karamanou, Konstantina
Dauchez, Manuel
Ramont, Laurent
Brézillon, Stéphane
Baud, Stéphanie
author_facet Dauvé, Jonathan
Belloy, Nicolas
Rivet, Romain
Etique, Nicolas
Nizet, Pierre
Pietraszek-Gremplewicz, Katarzyna
Karamanou, Konstantina
Dauchez, Manuel
Ramont, Laurent
Brézillon, Stéphane
Baud, Stéphanie
author_sort Dauvé, Jonathan
collection PubMed
description SIMPLE SUMMARY: This work aimed to investigate the interactions of lumican-derived peptides and MMP-14. An in silico approach unraveled key residues in the amino acid sequence of MMP-14 interacting with the Small Leucine-Rich Proteoglycan (SLRP) lumican-derived peptides. The in silico docking analysis demonstrated that the interaction of a cyclic lumican-derived peptide (L9Mc, 12 amino acids) with MMP-14 was preferential with the MT-Loop domain of MMP-14 while the linear lumican-derived peptide (lumcorin, 17 amino acids) interacted more with the catalytic site. L9Mc significantly inhibited the migration of murine B16F1 but not human HT-144 melanoma cells and the activity of MMP-14 but with less efficacy than lumican and lumcorin. This result led us to investigate the effect of L9Mc on cell proliferation, which is independent of MMP-14 activity. L9Mc significantly inhibited the proliferation of B16F1 but not HT-144 melanoma cells in vitro and primary melanoma tumor growth. Altogether, the biological assays validated the prediction of the in silico study. ABSTRACT: Lumican, a small leucine-rich proteoglycan (SLRP) of the extracellular matrix (ECM), displays anti-tumor properties through its direct interaction with MMP-14. Lumican-derived peptides, such as lumcorin (17 amino acids) or L9M (10 amino acids), are able to inhibit the proteolytic activity of MMP-14 and melanoma progression. This work aimed to visualize the interactions of lumican-derived peptides and MMP-14. Molecular modeling was used to characterize the interactions between lumican-derived peptides, such as lumcorin, L9M, and cyclic L9M (L9Mc, 12 amino acids), and MMP-14. The interaction of L9Mc with MMP-14 was preferential with the MT-Loop domain while lumcorin interacted more with the catalytic site. Key residues in the MMP-14 amino acid sequence were highlighted for the interaction between the inhibitory SLRP-derived peptides and MMP-14. In order to validate the in silico data, MMP-14 activity and migration assays were performed using murine B16F1 and human HT-144 melanoma cells. In contrast to the HT-144 melanoma cell line, L9Mc significantly inhibited the migration of B16F1 cells and the activity of MMP-14 but with less efficacy than lumican and lumcorin. L9Mc significantly inhibited the proliferation of B16F1 but not of HT-144 cells in vitro and primary melanoma tumor growth in vivo. Thus, the site of interaction between the domains of MMP-14 and lumcorin or L9Mc were different, which might explain the differences in the inhibitory effect of MMP-14 activity. Altogether, the biological assays validated the prediction of the in silico study. Possible and feasible improvements include molecular dynamics results.
format Online
Article
Text
id pubmed-8507859
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-85078592021-10-13 Differential MMP-14 Targeting by Lumican-Derived Peptides Unraveled by In Silico Approach Dauvé, Jonathan Belloy, Nicolas Rivet, Romain Etique, Nicolas Nizet, Pierre Pietraszek-Gremplewicz, Katarzyna Karamanou, Konstantina Dauchez, Manuel Ramont, Laurent Brézillon, Stéphane Baud, Stéphanie Cancers (Basel) Article SIMPLE SUMMARY: This work aimed to investigate the interactions of lumican-derived peptides and MMP-14. An in silico approach unraveled key residues in the amino acid sequence of MMP-14 interacting with the Small Leucine-Rich Proteoglycan (SLRP) lumican-derived peptides. The in silico docking analysis demonstrated that the interaction of a cyclic lumican-derived peptide (L9Mc, 12 amino acids) with MMP-14 was preferential with the MT-Loop domain of MMP-14 while the linear lumican-derived peptide (lumcorin, 17 amino acids) interacted more with the catalytic site. L9Mc significantly inhibited the migration of murine B16F1 but not human HT-144 melanoma cells and the activity of MMP-14 but with less efficacy than lumican and lumcorin. This result led us to investigate the effect of L9Mc on cell proliferation, which is independent of MMP-14 activity. L9Mc significantly inhibited the proliferation of B16F1 but not HT-144 melanoma cells in vitro and primary melanoma tumor growth. Altogether, the biological assays validated the prediction of the in silico study. ABSTRACT: Lumican, a small leucine-rich proteoglycan (SLRP) of the extracellular matrix (ECM), displays anti-tumor properties through its direct interaction with MMP-14. Lumican-derived peptides, such as lumcorin (17 amino acids) or L9M (10 amino acids), are able to inhibit the proteolytic activity of MMP-14 and melanoma progression. This work aimed to visualize the interactions of lumican-derived peptides and MMP-14. Molecular modeling was used to characterize the interactions between lumican-derived peptides, such as lumcorin, L9M, and cyclic L9M (L9Mc, 12 amino acids), and MMP-14. The interaction of L9Mc with MMP-14 was preferential with the MT-Loop domain while lumcorin interacted more with the catalytic site. Key residues in the MMP-14 amino acid sequence were highlighted for the interaction between the inhibitory SLRP-derived peptides and MMP-14. In order to validate the in silico data, MMP-14 activity and migration assays were performed using murine B16F1 and human HT-144 melanoma cells. In contrast to the HT-144 melanoma cell line, L9Mc significantly inhibited the migration of B16F1 cells and the activity of MMP-14 but with less efficacy than lumican and lumcorin. L9Mc significantly inhibited the proliferation of B16F1 but not of HT-144 cells in vitro and primary melanoma tumor growth in vivo. Thus, the site of interaction between the domains of MMP-14 and lumcorin or L9Mc were different, which might explain the differences in the inhibitory effect of MMP-14 activity. Altogether, the biological assays validated the prediction of the in silico study. Possible and feasible improvements include molecular dynamics results. MDPI 2021-09-30 /pmc/articles/PMC8507859/ /pubmed/34638415 http://dx.doi.org/10.3390/cancers13194930 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Dauvé, Jonathan
Belloy, Nicolas
Rivet, Romain
Etique, Nicolas
Nizet, Pierre
Pietraszek-Gremplewicz, Katarzyna
Karamanou, Konstantina
Dauchez, Manuel
Ramont, Laurent
Brézillon, Stéphane
Baud, Stéphanie
Differential MMP-14 Targeting by Lumican-Derived Peptides Unraveled by In Silico Approach
title Differential MMP-14 Targeting by Lumican-Derived Peptides Unraveled by In Silico Approach
title_full Differential MMP-14 Targeting by Lumican-Derived Peptides Unraveled by In Silico Approach
title_fullStr Differential MMP-14 Targeting by Lumican-Derived Peptides Unraveled by In Silico Approach
title_full_unstemmed Differential MMP-14 Targeting by Lumican-Derived Peptides Unraveled by In Silico Approach
title_short Differential MMP-14 Targeting by Lumican-Derived Peptides Unraveled by In Silico Approach
title_sort differential mmp-14 targeting by lumican-derived peptides unraveled by in silico approach
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8507859/
https://www.ncbi.nlm.nih.gov/pubmed/34638415
http://dx.doi.org/10.3390/cancers13194930
work_keys_str_mv AT dauvejonathan differentialmmp14targetingbylumicanderivedpeptidesunraveledbyinsilicoapproach
AT belloynicolas differentialmmp14targetingbylumicanderivedpeptidesunraveledbyinsilicoapproach
AT rivetromain differentialmmp14targetingbylumicanderivedpeptidesunraveledbyinsilicoapproach
AT etiquenicolas differentialmmp14targetingbylumicanderivedpeptidesunraveledbyinsilicoapproach
AT nizetpierre differentialmmp14targetingbylumicanderivedpeptidesunraveledbyinsilicoapproach
AT pietraszekgremplewiczkatarzyna differentialmmp14targetingbylumicanderivedpeptidesunraveledbyinsilicoapproach
AT karamanoukonstantina differentialmmp14targetingbylumicanderivedpeptidesunraveledbyinsilicoapproach
AT dauchezmanuel differentialmmp14targetingbylumicanderivedpeptidesunraveledbyinsilicoapproach
AT ramontlaurent differentialmmp14targetingbylumicanderivedpeptidesunraveledbyinsilicoapproach
AT brezillonstephane differentialmmp14targetingbylumicanderivedpeptidesunraveledbyinsilicoapproach
AT baudstephanie differentialmmp14targetingbylumicanderivedpeptidesunraveledbyinsilicoapproach