Cargando…

Kansuinine A Ameliorates Atherosclerosis and Human Aortic Endothelial Cell Apoptosis by Inhibiting Reactive Oxygen Species Production and Suppressing IKKβ/IκBα/NF-κB Signaling

Reactive oxygen species (ROS)-induced vascular endothelial cell apoptosis is strongly associated with atherosclerosis progression. Herein, we aimed to examine whether Kansuinine A (KA), extracted from Euphorbia kansui L., prevents atherosclerosis development in a mouse model and inhibits cell apopto...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Chen-Sheng, Pan, Bo-Yi, Tsai, Ping-Hsuan, Chen, Fang-Yu, Yang, Wen-Chin, Shen, Ming-Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8508741/
https://www.ncbi.nlm.nih.gov/pubmed/34638650
http://dx.doi.org/10.3390/ijms221910309
Descripción
Sumario:Reactive oxygen species (ROS)-induced vascular endothelial cell apoptosis is strongly associated with atherosclerosis progression. Herein, we aimed to examine whether Kansuinine A (KA), extracted from Euphorbia kansui L., prevents atherosclerosis development in a mouse model and inhibits cell apoptosis through oxidative stress reduction. Atherosclerosis development was analyzed in apolipoprotein E-deficient (ApoE(−/−)) mice fed a high-fat diet (HFD) using Oil Red O staining and H&E staining. Human aortic endothelial cells (HAECs) were treated with KA, followed by hydrogen peroxide (H(2)O(2)), to investigate the KA-mediated inhibition of ROS-induced oxidative stress and cell apoptosis. Oil Red O staining and H&E staining showed that atherosclerotic lesion size was significantly smaller in the aortic arch of ApoE(−/−) mice in the HFD+KA group than that in the aortic arch of those in the HFD group. Further, KA (0.1–1.0 μM) blocked the H(2)O(2)-induced death of HAECs and ROS generation. The H(2)O(2)-mediated upregulation of phosphorylated IKKβ, phosphorylated IκBα, and phosphorylated NF-κB was suppressed by KA. KA also reduced the Bax/Bcl-2 ratio and cleaved caspase-3 expression, preventing H(2)O(2)-induced vascular endothelial cell apoptosis. Our results indicate that KA may protect against ROS-induced endothelial cell apoptosis and has considerable clinical potential in the prevention of atherosclerosis and cardiovascular diseases.