Cargando…

A Method to Monitor the NAD(+) Metabolome—From Mechanistic to Clinical Applications

Nicotinamide adenine dinucleotide (NAD(+)) and its reduced form (NADH) are coenzymes employed in hundreds of metabolic reactions. NAD(+) also serves as a substrate for enzymes such as sirtuins, poly(ADP-ribose) polymerases (PARPs) and ADP-ribosyl cyclases. Given the pivotal role of NAD(H) in health...

Descripción completa

Detalles Bibliográficos
Autores principales: Giner, Maria Pilar, Christen, Stefan, Bartova, Simona, Makarov, Mikhail V., Migaud, Marie E., Canto, Carles, Moco, Sofia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8508997/
https://www.ncbi.nlm.nih.gov/pubmed/34638936
http://dx.doi.org/10.3390/ijms221910598
Descripción
Sumario:Nicotinamide adenine dinucleotide (NAD(+)) and its reduced form (NADH) are coenzymes employed in hundreds of metabolic reactions. NAD(+) also serves as a substrate for enzymes such as sirtuins, poly(ADP-ribose) polymerases (PARPs) and ADP-ribosyl cyclases. Given the pivotal role of NAD(H) in health and disease, studying NAD(+) metabolism has become essential to monitor genetic- and/or drug-induced perturbations related to metabolic status and diseases (such as ageing, cancer or obesity), and its possible therapies. Here, we present a strategy based on liquid chromatography-tandem mass spectrometry (LC-MS/MS), for the analysis of the NAD(+) metabolome in biological samples. In this method, hydrophilic interaction chromatography (HILIC) was used to separate a total of 18 metabolites belonging to pathways leading to NAD(+) biosynthesis, including precursors, intermediates and catabolites. As redox cofactors are known for their instability, a sample preparation procedure was developed to handle a variety of biological matrices: cell models, rodent tissues and biofluids, as well as human biofluids (urine, plasma, serum, whole blood). For clinical applications, quantitative LC-MS/MS for a subset of metabolites was demonstrated for the analysis of the human whole blood of nine volunteers. Using this developed workflow, our methodology allows studying NAD(+) biology from mechanistic to clinical applications.