Cargando…
A rotamer relay information system in the epidermal growth factor receptor–drug complexes reveals clues to new paradigm in protein conformational change
Cancer cells can escape the effects of chemotherapy through mutations and upregulation of a tyrosine kinase protein called the epidermal growth factor receptor (EGFR). In the past two decades, four generations of tyrosine kinase inhibitors targeting EGFR have been developed. Using comparative struct...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8511715/ https://www.ncbi.nlm.nih.gov/pubmed/34667537 http://dx.doi.org/10.1016/j.csbj.2021.09.026 |
_version_ | 1784582826807525376 |
---|---|
author | Hameduh, Tareq Mokry, Michal Miller, Andrew D. Adam, Vojtech Heger, Zbynek Haddad, Yazan |
author_facet | Hameduh, Tareq Mokry, Michal Miller, Andrew D. Adam, Vojtech Heger, Zbynek Haddad, Yazan |
author_sort | Hameduh, Tareq |
collection | PubMed |
description | Cancer cells can escape the effects of chemotherapy through mutations and upregulation of a tyrosine kinase protein called the epidermal growth factor receptor (EGFR). In the past two decades, four generations of tyrosine kinase inhibitors targeting EGFR have been developed. Using comparative structure analysis of 116 EGFR-drug complex crystal structures, cluster analysis produces two clans of 73 and 43 structures, respectively. The first clan of 73 structures is larger and is comprised mostly of the C-helix-IN conformation while the second clan of 43 structures correlates with the C-helix-OUT conformation. A deep rotamer analysis identifies 43 residues (18%) of the total of 237 residues spanning the kinase structures under investigation with significant rotamer variations between the C-helix-IN and C-helix-OUT clans. The locations of these rotamer variations take on the appearance of side chain conformational relays extending out from points of EGFR mutation to different regions of the EGFR kinase. Accordingly, we propose that key EGFR mutations act singly or together to induce drug resistant conformational changes in EGFR that are communicated via these side chain conformational relays. Accordingly, these side chain conformational relays appear to play a significant role in the development of tumour resistance. This phenomenon also suggests a new paradigm in protein conformational change that is mediated by supportive relays of rotamers on the protein surface, rather than through conventional backbone movements. |
format | Online Article Text |
id | pubmed-8511715 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Research Network of Computational and Structural Biotechnology |
record_format | MEDLINE/PubMed |
spelling | pubmed-85117152021-10-18 A rotamer relay information system in the epidermal growth factor receptor–drug complexes reveals clues to new paradigm in protein conformational change Hameduh, Tareq Mokry, Michal Miller, Andrew D. Adam, Vojtech Heger, Zbynek Haddad, Yazan Comput Struct Biotechnol J Research Article Cancer cells can escape the effects of chemotherapy through mutations and upregulation of a tyrosine kinase protein called the epidermal growth factor receptor (EGFR). In the past two decades, four generations of tyrosine kinase inhibitors targeting EGFR have been developed. Using comparative structure analysis of 116 EGFR-drug complex crystal structures, cluster analysis produces two clans of 73 and 43 structures, respectively. The first clan of 73 structures is larger and is comprised mostly of the C-helix-IN conformation while the second clan of 43 structures correlates with the C-helix-OUT conformation. A deep rotamer analysis identifies 43 residues (18%) of the total of 237 residues spanning the kinase structures under investigation with significant rotamer variations between the C-helix-IN and C-helix-OUT clans. The locations of these rotamer variations take on the appearance of side chain conformational relays extending out from points of EGFR mutation to different regions of the EGFR kinase. Accordingly, we propose that key EGFR mutations act singly or together to induce drug resistant conformational changes in EGFR that are communicated via these side chain conformational relays. Accordingly, these side chain conformational relays appear to play a significant role in the development of tumour resistance. This phenomenon also suggests a new paradigm in protein conformational change that is mediated by supportive relays of rotamers on the protein surface, rather than through conventional backbone movements. Research Network of Computational and Structural Biotechnology 2021-09-27 /pmc/articles/PMC8511715/ /pubmed/34667537 http://dx.doi.org/10.1016/j.csbj.2021.09.026 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Hameduh, Tareq Mokry, Michal Miller, Andrew D. Adam, Vojtech Heger, Zbynek Haddad, Yazan A rotamer relay information system in the epidermal growth factor receptor–drug complexes reveals clues to new paradigm in protein conformational change |
title | A rotamer relay information system in the epidermal growth factor receptor–drug complexes reveals clues to new paradigm in protein conformational change |
title_full | A rotamer relay information system in the epidermal growth factor receptor–drug complexes reveals clues to new paradigm in protein conformational change |
title_fullStr | A rotamer relay information system in the epidermal growth factor receptor–drug complexes reveals clues to new paradigm in protein conformational change |
title_full_unstemmed | A rotamer relay information system in the epidermal growth factor receptor–drug complexes reveals clues to new paradigm in protein conformational change |
title_short | A rotamer relay information system in the epidermal growth factor receptor–drug complexes reveals clues to new paradigm in protein conformational change |
title_sort | rotamer relay information system in the epidermal growth factor receptor–drug complexes reveals clues to new paradigm in protein conformational change |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8511715/ https://www.ncbi.nlm.nih.gov/pubmed/34667537 http://dx.doi.org/10.1016/j.csbj.2021.09.026 |
work_keys_str_mv | AT hameduhtareq arotamerrelayinformationsystemintheepidermalgrowthfactorreceptordrugcomplexesrevealscluestonewparadigminproteinconformationalchange AT mokrymichal arotamerrelayinformationsystemintheepidermalgrowthfactorreceptordrugcomplexesrevealscluestonewparadigminproteinconformationalchange AT millerandrewd arotamerrelayinformationsystemintheepidermalgrowthfactorreceptordrugcomplexesrevealscluestonewparadigminproteinconformationalchange AT adamvojtech arotamerrelayinformationsystemintheepidermalgrowthfactorreceptordrugcomplexesrevealscluestonewparadigminproteinconformationalchange AT hegerzbynek arotamerrelayinformationsystemintheepidermalgrowthfactorreceptordrugcomplexesrevealscluestonewparadigminproteinconformationalchange AT haddadyazan arotamerrelayinformationsystemintheepidermalgrowthfactorreceptordrugcomplexesrevealscluestonewparadigminproteinconformationalchange AT hameduhtareq rotamerrelayinformationsystemintheepidermalgrowthfactorreceptordrugcomplexesrevealscluestonewparadigminproteinconformationalchange AT mokrymichal rotamerrelayinformationsystemintheepidermalgrowthfactorreceptordrugcomplexesrevealscluestonewparadigminproteinconformationalchange AT millerandrewd rotamerrelayinformationsystemintheepidermalgrowthfactorreceptordrugcomplexesrevealscluestonewparadigminproteinconformationalchange AT adamvojtech rotamerrelayinformationsystemintheepidermalgrowthfactorreceptordrugcomplexesrevealscluestonewparadigminproteinconformationalchange AT hegerzbynek rotamerrelayinformationsystemintheepidermalgrowthfactorreceptordrugcomplexesrevealscluestonewparadigminproteinconformationalchange AT haddadyazan rotamerrelayinformationsystemintheepidermalgrowthfactorreceptordrugcomplexesrevealscluestonewparadigminproteinconformationalchange |