Cargando…
Directed network Laplacians and random graph models
We consider spectral methods that uncover hidden structures in directed networks. We establish and exploit connections between node reordering via (a) minimizing an objective function and (b) maximizing the likelihood of a random graph model. We focus on two existing spectral approaches that build a...
Autores principales: | Gong, Xue, Higham, Desmond J., Zygalakis, Konstantinos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8511780/ https://www.ncbi.nlm.nih.gov/pubmed/34659784 http://dx.doi.org/10.1098/rsos.211144 |
Ejemplares similares
-
Generative hypergraph models and spectral embedding
por: Gong, Xue, et al.
Publicado: (2023) -
Applications of combinatorial matrix theory to Laplacian matrices of graphs
por: Molitierno, Jason J
Publicado: (2012) -
Laplacian eigenvectors of graphs: Perron-Frobenius and Faber-Krahn type theorems
por: Biyikoğu, Türker, et al.
Publicado: (2007) -
On the Laplacian spectral radii of Halin graphs
por: Jia, Huicai, et al.
Publicado: (2017) -
The Lévy Laplacian
por: Feller, M N
Publicado: (2005)